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Preface

Introduction
This textbook provides an introduction, at academic bachelor level, into the field of surveying
and mapping. This book has grown from a series of readers and handouts which had been
compiled for the third year bachelor course on Surveying and Mapping, in the program of Civil
Engineering at Delft University of Technology, on the run, while developing and teaching this
course, over the years, from academic year 20132014, when this course was offered for the
first time, to date.

Overview and structure
This textbook consists of six parts, which are, to a large extent, selfcontained. Each part can
be used separately, and there is no real need to go through the book from the beginning to
the end. These six parts cover underlying subjects, such as land surveying, remote sensing
and mapping, which together constitute the field of surveying and mapping. The order of the
six parts in this book follows from the order in which the subjects are taught in the third year
bachelor course. A simple overview of the different subjects and their relations is shown in
Figure 1.

In this book we cover a wide range of measurement techniques to collect geospatial data.
A selection of measurement techniques is illustrated in Figure 1. In Part I we cover classic land
surveying techniques such as leveling and tachymetry, in Part III we cover GPS positioning,
and in Part IV various remote sensing techniques are presented. Next, measurements are to
be processed, indicated by the cloud with the formula for leastsquares parameter estimation,
addressed in Part II, in order to obtain, primarily geometric, information of interest, for in
stance position coordinates of topography on the Earth’s surface. Topography refers to the
forms and features of the Earth’s surface, where features can be natural, like rivers and moun
tains, and manmade, like roads, railways, canals, bridges and buildings. The word has its
roots in Greek, with topos (meaning ‘place’) and graphia (meaning ‘writing’), hence meaning
a description of a place in terms of its physical forms and features. The aforementioned posi
tioning activities require linking in a coordinate reference system, shown at left, and covered
in Part V. Eventually the goal is to store, archive and describe geospatial information in a Geo
graphic Information System (GIS) and visualize this information in a map, a threedimensional
map or a Digital Terrain Model, available for further consultation and dissemination, as shown
at bottom. This subject is covered in Part VI.

Content
We start in Part I with covering classical land surveying techniques, specifically leveling and
tachymetry. An introduction is given of these measurement techniques, as well as the un
derlying principles of the leveling instrument and the total station. The aim is to provide the
reader with sufficient knowledge, insight and instructions in order to be able to acquire actual
surveying skills in practice, be it at a basic level.

Mathematical geodesy, or the calculus of observations, covered in Part II, provides us
with the ‘data processing engine’ for land surveying in particular, and geoscience in general.
Basically it addresses the question how to go from measurements to information, and inter
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Figure 1: Overview of the subjects in this textbook on surveying and mapping, and their relationships.

pretation. In practice, surveying equipment is used, for instance, to measure distances. But
typically one is not interested in knowing these distances. Instead, one is interested in the
position of a certain object, which can be determined using these measured distances. And,
being aware that in reality measurements are never perfect, one would like to know and quan
tify the quality of the resulting position, for instance, what is the uncertainty in the outcome
one can expect under ordinary circumstances, or, to phrase it differently, how close can one
expect the obtained outcome to be to the actual true position? The approach to ‘handling
measurement data’ in this book is widely applicable in engineering, and as such contributes
to observational data science.

GPS positioning has a vast range of applications in society, and is an extremely useful
measurement technique also in surveying. In a relative setup, millimetertocentimeter level
positioning results are obtained in realtime, on the spot. In Part III the concept of standalone
positioning is presented, as well as highaccuracy RealTime Kinematic (RTK) positioning used
in surveying, civil engineering and geoscience.

Part IV provides an introduction to the physics principles underlying measurements for
surveying and remote sensing. Remote sensing means acquiring information about an object
or phenomenon without ‘going there’ or ‘touching it’, in contrast to taking measurements in
situ or on site. Remote sensing is about taking measurements from a distance.

Remote sensing mostly refers to the use of electromagnetic signals (light, radar, laser) and
sensors on board satellites and aircraft, in order to detect, measure and classify objects on
Earth, including the surface, atmosphere and oceans. Also acoustic signals are used, with
sensors on board vessels for measurements in oceans and waterways, and for subsurface
measurements.

Remote sensing with electromagnetic radiation in general serves a multitude of applica
tions, for example creating topographic maps and threedimensional terrain and elevation
models, mapping coastlines and wetlands, mapping landuse (think of deforestation and ur
banization), monitoring vegetation health, monitoring ice and snow coverage for climate stud
ies, measuring ocean temperature and monitoring ocean circulation, hazard assessment (such
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as flooding, erosion and landslide), measuring structural and surface deformations and subsi
dence, and observing atmospheric parameters such as cloud coverage for weather forecasting
and monitoring air pollution.

Part V provides an introduction to coordinate systems and map projections. The latter
allow us to visualize the Earth’s curved surface on a flat sheet of paper or computer screen.
The geometric infrastructure for coordinated surveying relies on reference systems, and as
there are many in existence in practice, transformation from one reference system to another
is an important subject to cover. Particular attention is given to heights and vertical reference.
Part V on reference systems concludes with an overview of commonly used reference systems,
both on and offshore, at a worldwide, European and national Dutch scale.

In observing and describing the Earth’s surface, as well as working on it while carrying out
civil engineering projects, maps are indispensable tools for effectively communicating spatial
information to colleagues, to the customer and to the public. Part VI of this book provides a
brief introduction to the subjects of cartography and Geographic Information Systems (GIS).
Working with visual variables and presenting spatial data is a skill, which is widely applicable
in engineering.

Educational considerations
This textbook keeps an informal and introductive style. Subjects are often described, explained
and illustrated by means of examples. This textbook, after all, has been written with an
educational goal in mind. The idea is to give students in civil engineering, and hopefully many
others as well, a first insight into commonly used measurement techniques, the calculus of
observations, the concepts and relevance of geometric infrastructure, and working with and
visualizing spatial geodata, i.e. the art of mapping. Knowledge of high school physics and
geometry should be sufficient to follow this textbook.

For Part II on mathematical geodesy, it is assumed that students have completed a course
in linear algebra as well as an introductory course in statistics (in Dutch: kansrekening en
statistiek), the latter for instance by using textbook [2].

Chapters and sections marked with a [*] contain material which is optional for the course
Surveying and Mapping (CTB3310). Part of this material is covered in the course Monitoring
and Stability of Dikes and Embankments (CTB3425).
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1
Introduction

The goal of surveying is to gather information about the Earth, the Earth’s surface and its
topography. In order to gather information about phenomena and processes on Earth, sur
veying is about taking measurements. From these measurements we extract the information
needed to model the Earth’s surface and processes taking place on Earth, and mostly we focus
on geometric information. As a simple example: we can identify the three vertices (corners)
of the small plot of grass in Figure 1.1, determine that this plot is approximately locally level
and that it can be represented by a triangle in the local horizontal plane. Next, we could
measure the lengths of the three edges (sides). Thus, a realworld entity, the plot of grass,
gets mapped as a twodimensional horizontal area, namely a triangle, in Euclidean geometry,
as shown at right.

For a civil engineer, land surveying is an essential skill. Surveying is used in all kinds
of construction works like building bridges and infrastructure. Buildings and infrastructure
need to be erected at the correct location, respect property boundaries, and have the correct
dimensions, corresponding to the design. In particular big infrastructural projects cannot
become a success without land surveying. Especially with big projects, improper surveying
can lead to loss of the construction and/or big insurance claims.

Overview of this part
In this part we cover leveling and tachymetry, which are considered classical land surveying
techniques. These techniques are typically used on a local scale, for topographic mapping,

Figure 1.1: As a simple example, a small plot of grass is surveyed and mapped. This plot is geometrically modelled
as a triangle and the three vertices (corners) are marked by redwhite range poles (in Dutch: jalons) in the photo
at left. When measurements of distance are taken along the three edges (sides), the simple map at right can be
created. Surveying and mapping is about ‘reducing the world around us to points, lines, polygons and volumes’.

3



4 1. Introduction

Figure 1.2: At left: etching of Jan Pieterszoon Dou (15731635) by Reinier van Persijn (undated), taken from
Wikimedia Commons [9] Public Domain. At right: titlepage of the ‘Tractaet vant maken ende Gebruycken eens
nieu gheordonneerden Mathematischen Instruments’, by Jan Pieterszoon Dou [8]. Public Domain.

and in support of construction works. Leveling is about measuring height differences, and
tachymetry about measuring angles and distances.

There is much more to say about land surveying, as it also involves subjects like triangu
lation, surveying polygons (traversing), underground surveying, stakeout, and measurement
and control for construction. For these subjects the reader is referred to the classical land
surveying textbook [6] (in Dutch).

Before discussing leveling and tachymetry, in Chapter 3 and 4 respectively, we give a brief
account of the history of land surveying in Chapter 2. Land surveying has a long and rich
history, going back to ancient Greece, Egypt and Mesopotamia.

Dutch historical perspective on landsurveying
In the 17th century, an important contribution to land surveying was made in Leiden, by Jan
Pieterszoon Dou [7], see Figure 1.2 at left. Around 1610 he invented the Holland Circle (in
Dutch: Hollandse Cirkel) and described this instrument in his book ‘Tractaet vant maken ende
Gebruycken eens nieu gheordonneerden Mathematischen Instruments’, published in 1612 and
reprinted in 1620 [8], see the title page in Figure 1.2 at right.

The instrument consists of two fixed sightlines, perpendicular to each other and attached
to a circle, and one additional sightline (by a pair of sights, a socalled alidade) that can be
rotated about the center of the circle, see Figure 2.5. This circle is graduated (marked) with
a resolution of one tenth of a degree (0.1∘ of 360 degrees), an extraordinary achievement at
that time. This instrument made it possible to precisely measure angles.

Later, by the end of the 18th century, theodolites replaced the Holland Circle. The optical
telescope was invented by Hans Lipperhey in 1608 [10], a master lens grinder and spectacle
maker, born in Wesel, Germany, living in Middelburg. He described his invention as a ’seecker
instrument om verre te sien’.

Since the sixties and seventies of last century, as discussed in the next chapter, the theodo
lite has developed into the total station, the instrument commonly used in today’s surveying.

https://commons.wikimedia.org/wiki/File:Jan_Pieterszoon_Dou_door_Reinier_van_Persijn.jpg
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History of land surveying

The history of land surveying goes back at least some 3000 years. The river Nile in Egypt
flooded parts of the country every year. To reoutline the farming land, surveyors remeasured
the land. It was important to return the land properly to the farmers, as the amount of tax
the farmers had to pay every year was proportional to the size (area) of their land. In those
days the surveyors were not so well equipped as today. Their tool was a calibrated rope. That
is why the Egyptian expression for a land surveyor was a ‘rope stretcher’, see Figure 2.1, and
surveying was known as ‘stretching a rope’.

Next in history, the Romans were known for their road system, their aqueducts and other
big infrastructural civil engineering constructions. A well known surveying instrument of them
was the groma. With this instrument they could stakeout straight and perpendicular lines,
see Figure 2.2. It is a vertical staff with a horizontal cross at right angles on top and plumb
lines hanging vertically from all four ends. Actually the groma was not a Roman invention.
The instrument originated from Mesopotamia about 1100 BC.

The earliest preserved writing on land surveying is by Heron of Alexandria, a Greek who
lived in Alexandria, Egypt, around 10  70 AD. His writing includes a treatise ‘Dioptra’ (sur
veyor’s transit), see Figure 2.3, and a geometry book ‘Metrica’, see [11] and [12].

In the Middle Ages the art of surveying got almost forgotten until the beginning of the
Renaissance. Around 1590 the plain table came in use, see Figure 2.4 — and it is occasionally
still in use today. This was the starting point for todays surveying.

A well known instrument for surveying is the Holland Circle (Hollandse Cirkel in Dutch), see
Figure 2.5. With this instrument angles could be measured, 360 degrees around, to distant

Figure 2.1: An ancient Egyptian surveyor at work in the farming fields. Harvest scenes from the tomb of Menna
ca. 1400  1352 BC. Image by Charles K. Wilkinson, Metropolitan Museum of Art, New York, taken from Wikimedia
Commons [9] under a CC0 1.0 Public Domain license.

5

https://commons.wikimedia.org/wiki/File:Harvest_Scenes,_Tomb_of_Menna_MET_DT207673.jpg
https://commons.wikimedia.org/wiki/File:Harvest_Scenes,_Tomb_of_Menna_MET_DT207673.jpg
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Figure 2.2: The groma, as used by Roman surveyors, allows to stakeout straight and perpendicular lines.

Figure 2.3: The dioptra described by Heron of Alexandria. Image courtesy of Kotsanas Museum of Ancient Greek
Technology, Katakolo, Ilia, Greece, [13].

Figure 2.4: Example of the use of the plain table. Image at left taken from ‘The compleat surveyor: or, the whole
art of surveying of land, by a new instrument lately invented’, by William Leybourn, 1722 [14], Public Domain.

https://kotsanas.com/gb/exh.php?exhibit=1301002
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Figure 2.5: The Holland Circle (in Dutch: Hollandse cirkel), an instrument for measuring directions to, and angles
between distant objects. Photo courtesy of Rijksmuseum Boerhaave in Leiden, the Netherlands [15].

objects (as for instance church towers). This was a development from the 17th century, and
an important step forward in land surveying.

With the invention of optical lenses and the telescope in the 17th century, surveying instru
ments for more precise measurements came within reach. From hereon two main directions
of instrument developments can be distinguished. One is the leveling instrument. Two first
examples of such an instrument — one without (at left), and the other with optics (at right)
— can be seen in Figure 2.6. These are the so called dumpy levels. Dumpy levels are still in
use today as one can see in Figure 2.7 at left, available in lower price categories. More often
in use is the ‘automatic’ leveling instrument or automatic level; ‘automatic’ in the sense that
the instrument has a builtin correction system for leveling, instead of a spirit level. Leveling
instruments are used for measuring height differences between two points. A more detailed
explanation follows later, in Chapter 3.

The other instrument is the theodolite. This instrument can measure horizontal and vertical
angles. These angles were used together with a measurement of length between two points,
and next all the points and objects could be positioned. This surveying technique is known as
triangulation. Some early examples of theodolites are shown in Figure 2.8.

A new development in the 1950’s was the Electronic Distance Measurement (EDM). In the
beginning these were huge instruments capable of just measuring distance. In the seventies
this technique got integrated in a theodolite, and the total station (or tachymeter) was born,
see Figure 2.9 at left. This is an instrument which can measure distance and directions all in
one go. Today the total station is the main workhorse in surveying, though classical theodolites
are still sometimes used for special projects.

In this part you will learn about the use of the leveling instrument and the tachymeter
(and total station). Principles and measurement techniques will be explained. We will first
start with leveling in Chapter 3, followed by tachymetry in Chapter 4.

https://geheugen.delpher.nl/nl/geheugen/view?identifier=ZZM01%3ABRK000013
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Figure 2.6: Leveling instruments from the early days of surveying. The construction with the spirit level attached
to a telescope is also known as a dumpy level (at right). Photo at left courtesy of Museum of Lands, Mapping
and Surveying, Queensland, Australia [16]. The leveling instrument at right was manufactured by B. Holsboer in
Arnhem (18751900).

Figure 2.7: A modern version of a dumpy level, Johnson 22X Builder’s Level (left), and an automatic level, Wild
NA20 (right). Photo at left courtesy of Johnson Level and Tool Mfg Company [17].

Figure 2.8: Theodolites from the early days of surveying. Photo at left, theodolite by Gilbert, London, taken from
Smithsonian National Museum of American History [18] for educational and noncommercial use.

https://www.qld.gov.au/recreation/arts/heritage/museum-of-lands/artefact-gallery/heighting
https://www.qld.gov.au/recreation/arts/heritage/museum-of-lands/artefact-gallery/heighting
https://www.johnsonlevel.com/P/1531/40-6900
https://amhistory.si.edu/surveying/index.htm
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Figure 2.9: At left an example of a modern total station (South 6N+), and at right a modern theodolite (South
DT02L). The theodolite at right looks more lean, and has a display showing just vertical and horizontal angle.
With the total station at left much more electronics is involved, in particular for the builtin Electronic Distance
Meter (EDM). Photos courtesy of South Surveying and Mapping Technology Co., Ltd. [19].

https://www.southinstrument.com/product/index/pro_tid/2.html
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Leveling

3.1. Principle of leveling
Leveling is measuring the height difference between two points A and B with respect to an
imaginary stationary open water surface — an equipotential surface, see Figure 3.1. The
measured height difference, as it results from leveling, is ℎ𝐴𝐵, which equals ℎ𝐴𝐵 = 𝐻𝐵 − 𝐻𝐴
the difference of the height of point B and the height of point A.

There is a direct way of carrying a certain height to another location, namely by using
a hose, filled with water. The water levels at both ends of the hose represent the same
equipotential surface. This direct way of leveling is known as hydrostatic leveling (see Figures
3.2 and 3.3). The Surveydepartment of Rijkswaterstaat in the Netherlands used this method
in the past for determining the height of the ’Wadden’ islands with respect to the mainland.
For this purpose an 11 kilometer length hose was used.

In this chapter we adopt a purely, and simply geometric approach to measuring and de
termining height. This is an approximation of reality which holds over small regions, where
we can approximate the Earth’s equipotential surface by just a flat plane. In Chapters 32 and
33 the true nature of height is covered, outlining its origin in gravity. In this chapter, leveling
is basically measuring a distance between two points along a vertical coordinate axis, and this
axis is pointing up.

The leveling line in Figure 3.4 is materialized by a strain wire, and connects two points
of equal height, using a spirit level in the middle. The airbubble in the spirit level is driven

Figure 3.1: The principle of leveling. The height difference equals the height of point B minus the height of point
A: ℎ𝐴𝐵 = 𝐻𝐵 − 𝐻𝐴. In this example the height difference is negative (B is lower than A), and hence the arrow is
downward. It also holds that ℎ𝐵𝐴 = −ℎ𝐴𝐵.

11



12 3. Leveling

Figure 3.2: The hose method to create an equipotential surface/line — the principle of hydrostatic leveling.

Figure 3.3: The hose method applied to measure the height difference ℎ𝐴𝐵 of Figure 3.1.

by gravity. The strain wire method is however not very practical, as you have to connect the
two points physically (through the wire). And the method is not very accurate either. Still this
method demonstrates the main principle of leveling. The physical wire has been replaced by
an optical line, a socalled line of sight, see Figure 3.5.

To measure the height difference between points A and B, one installs a rod or staff on
top of points A and B (and keeps it vertically, according to local gravity). This rod or staff is
actually a sort of big ruler. The horizontal line (along the optical line set out by the instrument
in the middle) hits the ruler at A and the one at B. One can read, through the telescope the
two distances 𝑙𝐴 and 𝑙𝐵 on the rulers, which is the height of the line of sight over point A, and
the height of the line of sight over point B, respectively. The difference of these two readings
yields the height difference between points A and B, namely ℎ𝐴𝐵 = 𝑙𝐴 − 𝑙𝐵. Note that the
staff reads zero at the bottom, and ‘distances’ 𝑙𝐴 and 𝑙𝐵 are measured upward (positive axis
is pointing upward).

Figure 3.4: Leveling by using a strain wire between two rods or staffs, with a spirit level attached to the wire in
the middle.
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Figure 3.5: The main principle of leveling. A line of equal height is established optically, by means of a telescope
in the middle (not shown here), which is setup according to local gravity. The line of sight is perpendicular to the
local plumb line. ℎ𝐴𝐵 = 𝑙𝐴 − 𝑙𝐵. Height difference ℎ𝐴𝐵 is negative here.

When the rod at point A is set up on a bolt with a given height, see Figure 35.9, the height
of point B easily follows as 𝐻𝐵 = 𝐻𝐴 + ℎ𝐴𝐵.

A leveling instrument is shown in Figure 3.6. The instrument is a telescope with a spirit or
automatic level, and the line of sight represents a certain, fixed height (indicated in gray). The
instrument can be rotated only about its vertical axis (which is aligned with the local plumb
line, indicated in red) and thereby you can see only objects which are at the same height, that
is, objects which are at the same level.

To measure the height difference between the points A and B as shown in the Figures 3.1
and 3.4, the leveling instrument is installed — on a tripod — in the middle between the rods
at A and B (Figure 3.7). Then a reading of rod A is taken, 𝑙𝐴, trough the telescope, followed
by a reading, also through the telescope, of rod B, 𝑙𝐵. The height different between points A
and B is then: ℎ𝐴𝐵 = 𝑙𝐴 − 𝑙𝐵.

In leveling, height differences are typically measured up to about 100 meters in distance
in one step, or stretch. In practice, height differences can be determined over distances of
several kilometers. That means that leveling is done stepbystep. Figures 3.8 and 3.9 shows
two methods of how this can be done.

Figure 3.8 starts with one rod and one leveling instrument. First the rod is setup at point A.
The leveling instrument is set up in the middle of points A and B. Then a reading of the rod
at point A is taken. Then the rod is moved from point A to point B. Then turn the instrument
from backsight direction to foresight direction and take a reading from the rod at B. While
keeping the rod at B, take the leveling instrument and set it up halfway points B and C. Now
follow the same routine as between the points A and B. And continue with this till the last and
final point is reached.

Figure 3.9 shows a second method. It starts with a leveling instrument and two rods.
One rod (the yellow one) is set up at point A, and the second one (in orange) is set up at
point B. The leveling instrument is set up halfway the points A and B. Now first take a reading
of the rod at point A (backsight). Turn the instrument to the foresight direction and take a
reading of the rod at point B. Now move the yellow rod from point A to point C. Secondly,
take the leveling instrument from its first setup (between A and B) and bring it to halfway
inbetween points B and C. Measure first in backsight the rod at point B. Turn the instrument
in the foresight direction and measure the rod at point C. Continue so, stepbystep, until the
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Figure 3.6: Leveling instrument in use. The vertical axis (in red) is setup along the local plumb line. The line of
sight (dashed line in gray), through the telescope, is in the local horizontal plane, and connecting — optically —
points of the same height.

Figure 3.7: One step or stretch of leveling: first take a reading of rod A, then turn the instrument to rod B, and
take a reading of rod B. The height difference is ℎ𝐴𝐵 = 𝑙𝐴 − 𝑙𝐵.
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Figure 3.8: Leveling procedure: method 1, using a leveling instrument and a single rod.

final point is reached.

3.2. Leveling instrument: automatic level
In Figure 2.7 two types of leveling instruments were presented. One is the so called dumpy
level, a leveling instrument with a spirit level (at left). This instrument was invented in the
early 1700’s, and is still in use today. It is not an easy instrument to handle, but it is very
reliable. The surveyor has to work very accurately when setting up this instrument and taking
measurements is rather time consuming.

A solution for the dumpy level came with the automatic level, or automatic leveling in
strument. In this instrument the spirit level was replaced by an optical mechanical leveling
system, the so called ‘compensator’. Figure 3.12 shows the compensator inside the leveling
instrument. Today most of the leveling instruments are automatic levels. They are available
for different classes of accuracy, ranging from instruments for surveying (very accurate) to
construction site purposes (built for measuring over short distances). Surveying grade auto
matic levels can even be equipped with a digital readout and data logging, plus an electronic
distance meter (see Figure 3.10).

In Figure 3.11 the outer parts of an automatic level are indicated. The figure shows,
for example the Nikon AC2SG, the part names, and these are generally the same for every
leveling instrument. A stepbystep explanation about how to setup a leveling instrument will
follow later in Section 3.6. The only point of attention for the moment is the circular level
(bottom left corner). When a leveling instrument is mounted on top of a tripod, one of the
first things to do is to level the instrument by adjusting the leveling screws, so that the bubble
in the circular level is right in the center.

A circular level is however not the most precise spirit level. To carry out accurate mea
surements with a leveling instrument, a much more precise way of leveling the instrument
is needed. This is done inside the instrument — permanently — by a compensator (see Fig
ure 3.12). The light beam — in red — from the objective is directed through a suspended
prism (light blue triangle) in such a way that it automatically corrects the direction to the local
horizontal, in case the leveling instrument has a small setup error Δ𝜑 with respect to the local
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Figure 3.9: Leveling procedure: method 2, using a leveling instrument and two rods.

Figure 3.10: A modern electronic automatic level with digital readout and datalogging functionality, Trimble DiNi
12. At right (a part of) the socalled barcode rod or staff is shown, to be used with this digital leveling instrument.
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Figure 3.11: The outer parts of an automatic level instrument, in this example the Nikon AC2SG.

Figure 3.12: A cross section diagram of an automatic level instrument. The light beam is shown in red. The prisms
in light blue constitute the compensator. The inset shows a photo of an actual compensator.

horizontal or ‘leveling line’ (see Figure 3.13).
Although the compensator corrects for small offsets in the instrument setup, a minor

error may still remain. This error depends on how well, and how long ago the instrument is
calibrated. The remaining small offset in the horizontal line of sight is shown in Figure 3.14,
and denoted by 𝜑.

Though a small error 𝜑 exists, it is still possible to obtain correct leveling measurements by
setting up the instrument just in the middle between the two rods or staffs (see Figure 3.15),
and the situation is perfectly symmetric to both sides of the instrument (lines of sight indicated
in red). The same error occurs at A and B, 𝜉 (in red), and therefore perfectly cancels in the
measured height difference, as ℎ𝐴𝐵 = 𝑙𝐴 − 𝑙𝐵.

When the instrument is setup excentric, that is, away from the middle, the error in reading
the rod is not the same at both rods, and therefore does not cancel in the measured height
difference. This situation is shown in blue, in Figure 3.15: 𝐿𝐴 ≠ 𝐿𝐵 (in blue) and the same
angular error in the line of sight translates in a much bigger error at A than at B, as 𝐿𝐴 > 𝐿𝐵.

With the exercises and worked examples in Section 3.7, we elaborate on a practical proce
dure to determine this error 𝜑 of the instrument in the field, even when the height difference
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Figure 3.13: The automatic level instrument in action. The horizontal center line of the instrument (blue line) is
intentionally set offlevel. The prisms of the compensator nevertheless realize a horizontal line of sight (red line).

Figure 3.14: Even with a compensator, the line of sight, or leveling line (in red or blue) of the instrument may still
be slightly off from the true local horizontal plane (indicated by the dashed line in black). This small remaining
error is indicated by angle 𝜑, and also referred to as a collimation error.

Figure 3.15: By settingup the leveling instrument right in the middle between points A and B, a remaining small
error in the line of sight (angle 𝜑) has no impact on the measured height difference (situation indicated in red).
The error is 𝜉 (in red) on both sides, and cancels in the height difference. When the instrument is not in the
middle, the measured height difference will be in error (situation indicated in blue). At point A the error in reading
the rod becomes 𝜉 + Δ𝜉, at point B this is 𝜉 − Δ𝜉. Hence, in the observed height difference ℎ𝐴𝐵, the error 2Δ𝜉
remains. As the misalignment angle 𝜑 is the same to both sides, Δ𝜉 (in blue) is the same on both sides (the lines
of sight in red and blue run parallel).
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Figure 3.16: The effects of the Earth’s curvature and atmospheric refraction on leveling. The reading of the rod
will be too large, and consequently the determined height will be too low.

between the points A and B is not known in advance. As Figure 3.15 already suggests, the
key lies in setting up the instrument twice: once in the middle, and once very much excentric.

To conclude this section on the automatic leveling instrument we mention that calibration
of the instrument is important. During a calibration it is, for instance, also checked whether
the reticle (cf. Figure 3.12 at right) is aligned with the line of sight of the instrument.

3.3. Curvature of the Earth
Early in Section 3.1, we made the assumption that the Earth — apart from topography — is
flat. This assumption is a fair approximation over small regions. In this section we analyse
the effect the curvature of the Earth has on leveling.

Figure 3.16 at left shows the instrument setup, at height ℎ above the Earth’s surface (here
simply assumed to be a sphere with radius 𝑅), nicely leveled, and the leveling rod at some
distance 𝐿, and at that location properly set up along the local plumb line (mind that at the
instrument and at the rod, gravity is pulling in slightly different directions). In this analysis,
the instrument height ℎ — typically 1.5 m — is neglected (or one can assume it to be included
in 𝑅, the Earth’s radius, which equals 6378 km); anyway we have ℎ ≪ 𝑅.

The line of sight of the instrument (the black line in Figure 3.16) not following the Earth’s
curvature, causes an error 𝑐 in the observed height difference; the true local horizontal is
indicated by the blue line. Using Pythagoras in the triangle to the center of the Earth, with
angle 𝛼, we have: 𝑅2 + 𝐿2 = (𝑅 + 𝑐)2. Realizing that 𝑐 ≪ 𝑅, so that the term 𝑐2 can be
neglected, we arrive at

𝑐 ≈ 𝐿2
2𝑅 (3.1)

For a distance of 𝐿 = 100 m, the effect is 𝑐 = 0.78 mm, and for a distance of 𝐿 = 1000 m,
the effect is 𝑐 = 7.8 cm. Hence, only over short distances, the effect of the Earth’s curvature
can be neglected.

Chapter 33 on vertical reference systems covers heights in further detail. Leveling — over
short distances — yields (good approximations to) orthometric height differences.

3.4. Atmospheric refraction
In Figure 3.16 it is also indicated that, generally, the Earth’s atmosphere gets more dense,
the closer one gets to the surface (𝜌0 > 𝜌1 > 𝜌2…). Thereby also the refractive index of
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the atmosphere gets larger, closer to the surface. By Snell’s law of refraction and Fermat’s
principle of least travel time, light will bend towards the Earth’s surface, and actually follow
the red line in Figure 3.16 — light will take the fastest route. Section A.1 in the appendix
provides a brief overview of the physical background on this subject.

As shown by the equations in Figure 3.16, the error due to the Earth’s curvature gets
actually reduced by the effect of atmospheric refraction, as we now have a factor of (1 − 𝑘)
instead of just 1 in the equation, where 𝑘 is an empirically determined factor, often a default
of 𝑘=0.13 is used. Similar to (3.1) for the Earth’s curvature, the effect of the curvature of
light waves due to the refraction is 𝐿2

2𝑟 , where the curvature radius is 𝑟 =
𝑅
𝑘 . Hence we obtain

𝑐 − 𝑐′ ≈ 𝑘 𝐿
2

2𝑅 , leading to

𝑐′ ≈ (1 − 𝑘) 𝐿
2

2𝑅 (3.2)

which represents the combined effect of the Earth’s curvature and atmospheric refraction.

3.5. Good practice: recommendations
In order to avoid excessive errors due to atmospheric refraction it is recommended to generally
keep a ground clearance of at least half a meter for the line of sight. One should also be aware
of the fact that over a pool of cold water, a ditch or a canal, the refractive index may show
strong gradients, leading to a strongly curved line of sight, and hence large leveling errors.

Good surveying practice is to limit the distance between instrument and rod to 50 meter
(to avoid excessive errors), and in particular to setup the instrument at equal distance from
the two rods (i.e. halfway). The latter practice eliminates a possible tilt error of the line of sight
(see Section 3.2), it also eliminates a big part of the Earth’s curvature effect (Section 3.3),
and — assuming that the Earth’s atmosphere is nicely horizontally layered and one is working
in a fairly flat area — it also eliminates most of the refraction error (Section 3.4).

3.6. Measurement procedure
In this section we outline the actual leveling procedure in the field. It consists of setting up
the tripod on which we mount the instrument. Then we level the instrument itself, to get the
line of sight horizontal, and we focus the reticle. Eventually we focus the telescope and take
a reading of the leveling rod.

3.6.1. Setup the tripod
The first step in carrying out leveling measurements is setting up the tripod. Normally the set
up height of the tripod corresponds to the length of the surveyor, so that he/she can look into
the eyepiece of the instrument in a comfortable way. First extend the three legs of the tripod
by the same amount. Spread out the legs at equal distance from each other as Figure 3.6
shows.

Figures 3.17 and 3.18 demonstrate how to fix the tripod legs on soft ground and on hard
surface, respectively.

3.6.2. Mount leveling instrument on tripod
The next step is mounting the leveling instrument — carefully — on the tripod by fasten it
with a screw (see Figure 3.19 left).
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Figure 3.17: Fixing the tripod legs on soft ground.

Figure 3.18: Fixing the tripod legs on hard surface.

Figure 3.19: Mounting the leveling instrument on the tripod (left), and setting the instrument level (right).



22 3. Leveling

Figure 3.20: To move the airbubble to the right from A to B (bottomleft panel of figure), turn the two screws A
and B as indicated. Turn the screw on top (C) as indicated (bottomright panel of figure) to make the airbubble
move upward to C, and to center the airbubble in the bull’s eye spirit level.

Figure 3.21: Focusing the reticle: the crosshair should be seen ultimately clear and sharp in order to allow for
parallaxfree readings. You should end up with the image at right. When focusing the reticle you may turn the
telescope to some white or light gray object, and leave the telescope unfocused.

3.6.3. Level the bull’s eye spirit level
After mounting, the instrument needs to be leveled by adjusting the leveling screws in such
a way that the airbubble gets centered in the bull’s eye spirit level (see Figure 3.19 right, in
particular the inset). The instrument is suspended at three points. Correspondingly there are
three leveling screws. How to adjust them is explained in the bottom panel of Figure 3.20.

Once you started measuring and reading ‘backsight’ and ‘foresight’, never readjust the
leveling screws, as the line of sight of the instrument will change immediately (as well as the
height of the instrument itself). When adjustment is needed, the setup of the instrument
should be redone, as well as the measurements.

3.6.4. Focus the reticle
Adjust the eyepiece lens (Figure 3.22) to focus the reticle, see Figure 3.21.

3.6.5. Point instrument to leveling rod
Point the instrument to the leveling rod or staff for the ‘backsight’ measurement by using the
indicated line of sight direction on the instrument housing (see Figure 3.22, dashed arrow in
blue). This allows you to quickly point the instrument roughly in the right direction.
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Figure 3.22: Automatic leveling instrument Wild NA20 with the eyepiece for focusing the reticle, the knob for
focusing the telescope, and the line of sight direction indicated on top of the housing.

Figure 3.23: Focusing the telescope on the leveling rod.

3.6.6. Focus the telescope
Next, direct the leveling instrument straight onto the rod, i.e. look through the eyepiece and
search for the leveling rod by using the horizontal finemotion knob (cf. Figure 3.22). And,
focus on the rod by adjusting the focusing knob of the telescope (Figure 3.23), so that you
can see the rod and the markers very clearly. Eventually it should look like that the crosshair
sticks onto the leveling rod.

3.6.7. Reading the leveling rod
The leveling rod is a kind of ruler with a repeated decimeter pattern (Figure 3.24 at left).
The indicated numbers …, 13, 14, 15, … represent a decimeter scale [dm]. The decimeter is
divided, by an ‘E’pattern (red and white letters ‘E’), into centimeters [cm] (this type of leveling
rod is sometimes referred to as ‘Erod’, or ‘Ebaak’ in Dutch). Figure 3.24 at right shows the
decimeter pattern with a [cm] and [mm] scale outlined.

Reading the leveling rod through the eyepiece of a leveling instrument, the horizontal cen
ter line (crosshair) of the reticle directly gives the observation. In Figure 3.25 the observation
reads: 14.22 dm. The last digit, here 0.02 dm, is an estimate, taking the scale of Figure 3.24
in mind (it is two millimeters).

To check for correctness of the observation, and in order to obtain an indication of the dis
tance between the instrument and the rod, also readings from the upper and lower horizontal
line in the reticle must be taken (these horizontal lines in the reticle are also known as stadia
lines). In the example of Figure 3.25 the upper line reads 15.00 dm, and the lower line reads
13.44 dm. The average of these readings must equal, or be close to, the observation made
with the (center) crosshair. Here we have: (15.00 + 13.44)/2 = 14.22 dm, hence a perfect
match.

The distance from the instrument to the rod or staff can be calculated too. Take the
difference between the upper line and lower line reading and multiply this by 100. In the
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Figure 3.24: At left: leveling rod or staff, of socalled ‘Etype’, a white ‘E’ and red ‘E’ together cover one decimeter.
The numbers indicated on the rod represent a decimeter scale. At right: A one decimeter piece of a leveling rod.
When reading the rod, the surveyor can take a decimeter and centimeter reading, and should estimate the amount
of millimeters.

Figure 3.25: Taking an observation by reading the leveling rod through the eyepiece of the instrument (at left).
And at right the registration of this observation.
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Figure 3.26: Example of a leveling observation registration form. In the left column of the ‘backsight’part, one
supplies the readings of respectively the upper, center and lower line, next one computes the average and the
distance. This is repeated for the ‘foresight’ staff in the middle column, and eventually the last column is completed,
by carrying over the two centerline observations, and computing the difference.

example we have (15.0013.44) * 100 = 156 dm, which is equal to 15.6 m. This measurement
of distance is not very precise, but it is good enough to know how well the leveling instrument
was centered in between the two leveling rods.

To conclude, Figure 3.26 shows an example of an observation registration form, in this
case just a part is shown corresponding to leveling one step or stretch, with a backsight and
a foresight reading (cf. Figure 3.7). For both the backsight and foresight one computes the
average of upper and lower wire reading, and also the distance.

3.7. Exercises and worked examples
This section presents a couple of exercises and worked answers on leveling.

Question 1 Starting from point 1, with given height (0.382 m), one has leveled from
point 1 to point 2, from 2 to 3, and eventually from point 3 to point 4, in order to determine
the height of point 4, see Figure 3.27. The backsight and foresight readings each time,
are listed in Table 3.1; this is a simplified measurement form, without upper and lowerline
readings. Compute the height of point 4.

Figure 3.27: Leveling line from point 1 to point 4, observed in three runs.

run back fore

1 16.53 12.27
2 15.10 8.43
3 4.60 19.64

Table 3.1: Simplified measurement form with just centerline readings of back and foresight. Readings are given
in dm.

Answer 1 The height of point 4 follows in this case straightforward as 𝐻4 = 𝐻1 + ℎ12 +
ℎ23 + ℎ34. The height differences can be obtained from the back and foresight readings,
for instance ℎ12 = 𝑙1 − 𝑙2, in this case ℎ12 = 16.53 − 12.27 = 4.26 dm. We get 𝐻4 =
0.382 + 0.426 + 0.667 − 1.504 = −0.029 m.

Question 2 Due to imperfections in the optical part of a leveling instrument, the lineof
sight may not be perfectly horizontal, when the instrument has been properly setup (that is,
its vertical axis according to the local plumb line). The line of sight is slightly tilted, as shown
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in the two setups in Figure 3.28; the dashed lines show the perfect horizontal line, and the
solid lines show the actual lines of sight. Using a symmetric setup (shown at left) and an
asymmetric setup (shown at right) between the same two points, A and B, it is possible to
determine the tilt error (that is, the small angle between the solid and the dashed line). With
the following readings 𝑧𝐴 = 1.540 m, 𝑧𝐵 = 1.268 m (for the setup at left), and 𝑧′𝐴 = 1.470 m
and 𝑧′𝐵 = 1.218 m (for the setup at right), and distance 𝑑 = 40 m, determine the tilt error.

Figure 3.28: Two setups to measure the same height difference ℎ𝐴𝐵 between points A and B, in order to determine
the misalignment error of the line of sight of the leveling instrument. This is referred to as the two peg test.

Answer 2 This question refers to the situation shown in Figure 3.15. The situation at left
in Figure 3.28 corresponds to the situation shown in red in Figure 3.15. In this (symmetric)
situation, the readings at both rods are off by 𝜉. For the rod at point A the reading is 𝑧𝐴 =
𝑙𝐴 + 𝜉 = 1.540 m, where 𝑙𝐴 is the reading as it should be (with a horizontal line of sight), and
𝜉 is the systematic error in the reading, due to tilt of the line of sight. For the rod at point B
we have 𝑧𝐵 = 𝑙𝐵 + 𝜉 = 1.268 m, and hence the height difference becomes ℎ𝐴𝐵 = 𝑧𝐴 − 𝑧𝐵, cf.
Figure 3.5, in this case ℎ𝐴𝐵 = 𝑙𝐴 + 𝜉 − 𝑙𝐵 − 𝜉 = 𝑙𝐴 − 𝑙𝐵 = 0.272 m, and the height difference
is not affected by the misalignment of the line of sight in this symmetric setup. In the a
symmetric setup, shown at right, and indicated in blue in Figure 3.15, the misalignment
error will not cancel. For the reading of the rod at A we have 𝑧′𝐴 = 𝑙′𝐴 + 𝜉 − Δ𝜉, and for the
reading of the rod at B we have 𝑧′𝐵 = 𝑙′𝐵 + 𝜉 + Δ𝜉. So, the observed height difference now
becomes ℎ′𝐴𝐵 = 𝑧′𝐴 − 𝑧′𝐵 = 𝑙′𝐴 − 𝑙′𝐵 − 2Δ𝜉 = 0.252 m; the height difference is off by 2Δ𝜉. With
the proper height difference ℎ𝐴𝐵 = 𝑙𝐴 − 𝑙𝐵 = 0.272 m from the symmetric setup (note that
𝑙′𝐴 − 𝑙′𝐵 = 𝑙𝐴 − 𝑙𝐵), we arrive at 2Δ𝜉 = 0.02 m, or Δ𝜉 = 0.01 m. Finally we consider the fact
that the misalignment error is fixed all the time (same angle between the dashed and solid
line everywhere). Hence, the two triangles in the figure at right have identical shapes. In the
triangle at left, the distance to the rod is 𝑑

2 and the reading error is 𝜉 − Δ𝜉. In the triangle
at right, the distance to the rod is 3

2𝑑 and the reading error is 𝜉 + Δ𝜉. Insisting on identical
shapes for these triangles leads to

𝜉 − Δ𝜉
𝑑
2

= 𝜉 + Δ𝜉
3
2𝑑

from which follows that 𝜉 − Δ𝜉 = 1
3(𝜉 + Δ𝜉), hence

2
3𝜉 =

4
3Δ𝜉, which yields 𝜉 = 2Δ𝜉 =

2 ⋅0.01 = 0.02 m. Considering the symmetric situation at left, the reading error is 𝜉 = 0.02 m,
at a distance of 𝑑 = 40 m, hence the angle follows from tan𝜑 = 𝜉

𝑑 , as 𝜑 = 5 ⋅ 10
−4 rad. Mind

that it may look odd at first instance, that, going from the symmetric setup to the asymmetric
setup, both readings at A and B get less (𝑧′𝐴 < 𝑧𝐴 and 𝑧′𝐵 < 𝑧𝐵). In practice the terrain may
not be exactly flat, as suggested in the drawing, and/or the instrument height can be different
for the two setups. The reading at A got however, less by a bigger amount than the reading
at B.
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Tachymetry

Tachymetry is about measuring angles and distances, according to the principle of polar or
spherical coordinates to determine the position of a target or object (in two or three dimensions
respectively). A tachymeter or total station basically is a theodolite with a builtin distance
meter. Therefore the tachymeter is explained in two parts in this chapter. First the theodolite
is covered, and next, in the section on the total station, the distance meter is covered.

4.1. Theodolite
A theodolite is a surveying instrument meant to measure both horizontal and vertical angles.
Therefore this instrument is equiped with two scales. A scale is a circular disc which is sub
divided with markers into very small equal parts (pies), see also Figure 18.1. Figure 4.1 shows
the theodolite in its most basic form.

A diagram of the theodolite is shown in Figure 4.2. The zero direction on the horizontal
scale is in an arbitrary direction; the zero direction on the vertical scale is by default exactly
up, along the vertical axis.

The theodolite should be set up such that the vertical axis is aligned with the local plumb
line, see Figure 4.3. And, the instrument has to be positioned such that the vertical axis, when
extended downwards, hits the benchmark or survey marker on the ground. How to achieve
this in practice is detailed later on.

Figure 4.4 shows how — at one setup of the instrument — a horizontal and vertical
angle are measured between two objects. The horizontal direction to object A is 𝜑𝐴, and
the horizontal direction to object B is 𝜑𝐵. The horizontal angle between the two objects is
𝜑𝐴𝐵 = 𝜑𝐵 − 𝜑𝐴. The vertical scale is not shown in Figure 4.4. The zero direction is by default
exactly up, along the vertical axis. The vertical direction (zenith angle) to object A is 𝑧𝐴, and
the vertical direction to object B is 𝑧𝐵. The vertical angle is then 𝑧𝐴𝐵 = 𝑧𝐵 − 𝑧𝐴.

The enclosed angle 𝜉 can be found, as stated in Figure 4.4 at bottom, using the cosine rule
from spherical trigonometry. A unit sphere is taken, and a triangle on this sphere is considered
with nodes A, B and the zenith.

In daily day life angles are measured in degrees, with a full turn (full circle) being 360
degrees, and with 1 degree subdivided into 60 minutes, and 1 minute subdivided into 60
seconds. This way of counting goes back to the ancient Babylonians (5000 BC). By the time
of the French revolution (at end of the 18th century), Napoleon wanted to modernize this way
of counting. He introduced the metric system, with a decimal way of counting, for instance
with length expressed in meters, kilometers and centimeters, and also a decimal system for
angles. The decimal degrees are known as gon [gon], grades or gradians [grad]. A full turn

27
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Figure 4.1: The theodolite in its most basic form, actually DoItYourself with paper and cardboard. There are two
scales, one for measuring vertical angles, and the other for measuring horizontal angles. The historical theodolites
of Figure 2.8 show similarly.

Figure 4.2: Diagram of a theodolite. The vertical (V) axis is set up along the local vertical (gravity, plumb line), the
horizontal (H) axis is constructed orthogonal to the vertical axis, and the line of sight (in green) of the telescope
is again orthogonal to the horizontal axis. An angle is the difference — looking from one setup point — between
the directions to two objects. At one setup of the instrument the horizontal and vertical direction are measured
to a first object, 𝜑𝐻 and 𝜑𝑉, and next, the horizontal and vertical direction are measured to a second object. And
angles result as the difference of the two directions, both for horizontal and vertical.
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Figure 4.3: The setup of a theodolite, and identically, of a total station: the vertical axis should be set up along
the local plumb line, and it points up to the local zenith. Unlike with leveling, it is crucial to setup the instrument
right above the benchmark or surveymarker in the ground. The vertical axis of the theodolite, when extended
downward, should pass right through the surveymarker.

Figure 4.4: Measuring a horizontal and vertical angle between objects A and B with a theodolite.
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is equivalent to 400 gon, instead of 360 degrees as the old Babylonian did. So a right angle
is 100 gon. There is no subdivision into minutes or seconds, just decimal numbers. A right
angle is 100.0000 gon.

This decimal system for measuring angles was adopted by surveyors in continental Europe
Today decimal degrees ([gon]) is the way of measuring angles in theodolites and total stations
in surveying. However in English speaking countries you will find equipment working with
degrees, minutes and seconds, just like the mile, yard, foot and inches are in use there for
distances.

Mind that generally, working with angles expressed in radians is mathematically more
convenient, rather than angles in degrees or gon.

With a theodolite one can take a reading of a direction up to 0.0001 gon. Total stations
may have a slightly poorer resolution for measuring directions (e.g. 0.001 gon), but they are
equiped with a distance meter, and that is very practical. Total stations are very popular in
surveying, and covered in the next section.

To conclude this section we review, like in the section on the automatic leveling instrument,
the most relevant instrumental errors of the theodolite. The vertical axis should be setup
along the local plumb line. This is done using the (plate) bubble on the instrument. Therefore
the instrument should have been properly calibrated. If, for some reason, the bubble is mis
aligned, the vertical axis may not be setup perfectly vertical, and erroneous measurements
will result.

Next, the horizontal axis should be constructed orthogonal to the vertical axis, and, the
line of sight of the telescope again orthogonal to the horizontal axis (cf. Figure 4.2). The
effects of small violations of these two construction requirements, as shown in Figure 4.5,
can be eliminated by a special measurement procedure, refered to as measuring ‘face left’
and ‘face right’, and taking the average of the two measurements, see later Section 4.6.
Directions to a series of objects are measured ‘face left’, and directions are measured to the
same series of objects ‘face right’. Then angles (or reduced directions) are formed, each time
as the difference of two directions, from the ‘face left’ measurements, and from the ‘face right’
measurements as well. The average of a ‘face left’ and a ‘face right’ angle is then free from
these two instrumental errors, as for example error 𝛽 in Figure 4.5 is involved once with a
positive sign, and once with a negative sign.

4.2. Total station
A total station basically is an electronic theodolite with a builtin opto Electronic Distance
Measurement device (EDM). The instrument is shown in Figure 4.6.

The EDM is integrated in the telescope of the instrument, see Figure 4.7. At the basis is
an InfraRed (IR) Light (laser) Emitting Diode (LED), which sends an amplitude modulated
signal. Next, there is an InfraRed (IR) photodiode, to receive the reflected signal. The
distance measurement then follows as the phase difference between the signal generated
by the instrument (modulation oscillator) and the signal which is received back by the photo
diode.

Figure 4.8 shows how the EDM measures a distance. A signal is sent by the total station,
then reflected by a reflector, and received again at the total station, hence the signal travels
in total a distance of 2𝑑 (twoway ranging), see also Section 18.2. Now, the distance traveled
can be expressed in terms of the wavelength of the modulation of the signal:

2𝑑 = 𝑛𝜆𝑚 + Δ𝜆𝑚
The total distance 2𝑑 contains an integer number 𝑛 of modulation signal wavelengths 𝜆𝑚,
and a fractional phase difference Δ𝜆𝑚 =

Φ0−Φ𝑖
2𝜋 𝜆𝑚, with the phase Φ expressed in radians, as
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Figure 4.5: Instrumental error of a theodolite: the line of sight (in red) is not exactly orthogonal to the horizontal
axis, it is off by a small angle 𝛽. Turning the telescope about the horizontal axis causes the line of sight to describe
a cone, rather than a vertical plane. This will cause errors in observed horizontal directions. However, if one turns
the telescope by 180 degrees about the horizontal axis, and then turn the theodolite by 180 degrees about its
vertical axis, the same horizontal direction can be measured, but now misalignment error 𝛽 works the other way.
The procedure is referred to as measuring both in faceleft and faceright position.

Figure 4.6: Overview of total station, Leica TCRP 1201+.
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Figure 4.7: The Electronic Distance Measurement (EDM) instrument integrated in the telescope of a total station.
The InfraRed light is emitted (in red) and the received signal (in blue), which has been reflected by a reflector
held at the point of interest, is captured by a photo diode. Essentially the signal traveltime is measured, and
multiplied by the speed of light. This, divided by two, yields the distance between instrument and reflector.

Figure 4.8: Phase comparison measurement technique of Electronic Distance Measurement (EDM) instrument.
The distance to be measured between total station and reflector is 𝑑. The red wave is the transmitted signal,
the blue wave the reflected signal. For clarity the blue wave has been ‘unfolded’ to the right, arriving at A’ in the
second line of the graph.
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frequency [Hz] wavelength [m] measured Δ𝜆[𝑚]

𝑓1 30 MHz 10 2.845
𝑓2 3 MHz 100 62.85
𝑓3 300 kHz 1000 363.0

2𝑑 362.845

Table 4.1: Measuring distance through phase comparison and using three different frequencies 𝑓1, 𝑓2 and 𝑓3. The
highest frequency yields 2.845 (untruncated), for the middle frequency (with 𝑓2 = 𝑓1/10) we have 60, and from
the lowest frequency, for which holds 𝑓3 = 𝑓1/100, the result of trunc(Δ𝜆3/100) ∗ 100 reads 300. Together this
yields 362.845 m as a reading for distance 2𝑑 by the Electronic Distance Measurement (EDM) device. Mind that
the same carrier (e.g. IR or laser light) can be used in all cases — the above mentioned frequencies refer to the
modulation of the carrier (e.g. the IR/laser light is amplitude modulated).

shown in Figure 4.8.
The fractional phase difference ΔΦ = Φ0 −Φ𝑖 can be measured by the phase comparator,

as indicated in Figure 4.7, and this fractional phase difference is invariant to the number of full
wavelengths, or cycles, of the signal. In this way one has no clue at all about how many full
wavelengths 𝑛𝜆𝑚 are included in the measured distance 2𝑑; one wave looks just like another.

The solution lies in employing different frequencies for modulating the IRlight. For the
example in Figure 4.9 we use three different frequencies, namely 𝑓1 as the highest frequency,
𝑓2 = 𝑓1/10, and the lowest frequency 𝑓3 = 𝑓2/10 = 𝑓1/100. The wavelengths are consequently
related as 𝜆1, 𝜆2 = 10𝜆1, and 𝜆3 = 10𝜆2 = 100𝜆1. The procedure is to measure Δ𝜆 with all
three frequencies, Δ𝜆1 for 𝑓1, Δ𝜆2 for 𝑓2, and Δ𝜆3 for 𝑓3. The distance follows as

𝑑 = 1
2(Δ𝜆1 + trunc(Δ𝜆210 ) ∗ 10 + trunc(Δ𝜆3100) ∗ 100)

where trunc means rounding a positive number down to its nearest integer (i.e. cutting any
decimal part). Table 4.1 provides an example. The result of the highest frequency, in this case
2.845 m, is carried untruncated into the measured distance — the highest frequency yields
the most precise phase comparison. The lowest frequency determines the working range of
the instrument, in this example, 1000 m, divided by two. In practice, total stations employ four
different modulating frequencies for distance measurements. The whole procedure described
here is carried out automatically, upon a simple ‘press the button’ by the surveyor, and the
resulting distance appears on the display. The distance measurement accuracy is in the order
of one to a few millimeter, plus one or a few ppm (parts per million).

In this section the phase comparison method for measuring a distance was covered. Al
ternatively a distance can also be measured by determining the traveltime of a short pulse.
The traveltime, multiplied by the speed of light, and divided by two, directly yields distance
𝑑, without ambiguity, see Section 20.1.1. The accuracy is however poorer than what can be
achieved with the phase comparison method.

4.3. Atmospheric refraction
So far, we implicitly assumed that electromagnetic waves (e.g. InfraRed or laser light to mea
sure distance) travel with the speed of light in vacuum 𝑐. With surveying these measurements
take place in the Earth’s atmosphere, and one has to account for the effect of atmospheric
refraction. The refractive index 𝑛 relates the actual propagation speed through the medium
𝑣, and the speed of light in vacuum 𝑐:

𝑛 = 𝑐
𝑣
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Figure 4.9: Using several frequencies in succession to measure distance 𝑑, through phase comparison.

see the section on propagation effects in Appendix G. As 𝑛 > 1, we measure a longer signal
traveltime and hence, experience a longer (than actual) distance.

In vacuum, frequency and wavelength are related through 𝑐 = 𝜆𝑓, and in medium we
obtain, with 𝑐 = 𝑛𝑣, 𝑛𝑣 = 𝜆𝑓, or 𝑣 = 𝜆

𝑛𝑓. Hence the apparent wavelength of a signal

with frequency 𝑓 in the medium becomes 𝜆
𝑛 , rather than just 𝜆 in vacuum. This is shown in

Figure 4.10.
As a side note we state that the refractive index is actually dependent on frequency 𝑓, an

effect known as dispersion. This effect is not further dealt with here.
As outlined in the previous section, the distance is measured by an EDM through phase

comparison, and the phase difference yields — apart from the ambiguity — the measured
distance Δ𝜆𝑚 = Φ0−Φ𝑖

2𝜋 𝜆𝑚. If, in the multiplication at the right hand side, the wavelength
in vacuum is used, whereas actually the (smaller) wavelength in the medium (atmosphere)
should be used (as 𝑛 > 1), the distance output by the instrument is too large.

For visible light, the refractive index of air (at 𝑇=15 degrees Celsius temperature and
𝑝=1013.25 mbar atmospheric pressure) is around 𝑛 = 1.0003. The error due to atmospheric
refraction is consequently a 3 ⋅ 10−4 effect (300 ppm, i.e. 300 parts per million), hence on a
100 m distance, the effect is 3 cm. In practice, surveying equipment assumes standard or
average atmospheric conditions (e.g. 𝑝 = 1013.25 mbar, 𝑇 = 15∘ C and a relative humidity of
50%), and only deviations from these conditions will cause errors. In general, these errors
are small, or very small, in particular when only short distances are measured (up to 100 m),
extreme weather conditions are avoided, and measurements are taken relatively close to sea
level (not in mountainous areas).

Often, the remaining atmospheric refraction effect, in the order of a few ppm, can be
corrected for, by entering the remaining scale factor in the instrument. The firmware in the
instrument then applies this scale factor automatically to measured distances. Section A.1 in
the appendix briefly elaborates on the physical background of atmospheric refraction. Finally
it is wise, like with leveling, to keep sufficient clearance for the signal path from ground and
obstacles like walls.
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Figure 4.10: When an electromagnetic wave with frequency 𝑓 from vacuum (in white), enters a medium (in gray)
with refractive index 𝑛, the wavelength apparent in the medium is 𝜆

𝑛 , rather than 𝜆 in vacuum. The waves are
shown by lines of equal phase, see also Figure G.7.

Figure 4.11: Corner cube reflector for EDM measurements with a total station (Leica survey prism GPR121). The
reflector can be mounted on a range pole and taken to survey points of interest, or by means of a carrier installed
on a tribrach on a tripod.

4.4. Corner cube reflector and prism constant
When measuring a distance with the EDM of a total station, a special kind of reflector is usually
needed to return the emitted IRlight, see Figure 4.11. This type of reflector is called a corner
cube reflector based on its physical shape — a diagonally cut prism from a cube of clear glass
(Figure 4.12).

The corner cube reflector has a very interesting property — it reflects an incident light
beam back into exactly the same direction where it came from (Figure 4.13). The reflector
does not need to be directed exactly to the light source for this.

Figure 4.14 explains the working of the corner cube reflector when it is used with a total
station to measure a distance. A signal (e.g. IRlight) is sent by the EDM to the prism. In the
reflector the light beam generally reflects three times before it travels back to the EDM. Two
important issues should be noted now. First the signal travels a certain distance within the
reflector, and second, the material of the reflector is glass and not air, and hence the signal
experiences a lower propagation speed inside the reflector, than in air (as 𝑛glass > 𝑛air). For
the refractive indices holds

𝑛air𝑣air = 𝑛glass𝑣glass
Figure 4.14 shows a twodimensional version of the setup. As the two reflecting surfaces

are under 45 degrees, the total path length through the reflector (indicated in blue arrows in
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Figure 4.12: The corner cube prism constructed from a cube of clear glass.

Figure 4.13: Corner cube reflector: incident light is reflected back to its source.

Figure 4.14) equals 𝑑prism,glass = 2ℎ, with ℎ being the (physical) depth of the reflector. The
total path length through the reflector would be 𝑑prism,air = 2𝑤 in case the reflector would be
made of air, see the right upper corner of the figure. And the relation reads

𝑤 = ℎ
𝑛glass
𝑛air

In the same amount of time, the signal travels (with 𝑣glass) distance ℎ in glass, and could
have traveled equivalently (with 𝑣air) distance 𝑤. As shown in Figure 4.14, 𝑤 is the distance
between the frontside of the reflector and the apparent signal reflection point So. If the
surveyor is not aware of the fact that the reflector is made of glass, and assumes the signal is
traveling all the way just through air, he/she would conclude — based on the obtained distance
measurement — that the signal got reflected at point So. The measured distance is longer,
as 𝑛glass > 𝑛air.

Hence, to retrieve correct geometric information from the distance measurement, a correc
tion needs to be applied for using the reflector. We introduce yet another offset, the socalled
prismconstant. In practice the reflector needs to be positioned at the point of interest, and as
the reflector is not an infinitesimal small object, we need to define a point of reference on this
object. Most logical would be to use the point So as the point of reference, see Figure 4.15
at left. Positioning So above the point of interest immediately yields the correct distance and
we do not need to care about the prism being constructed of glass (instead of air). In prac
tice however, often a socalled center of symmetry, Sc, is defined with the prism, which is a
distance 𝐶prism away from So. The point Sc is used to connect the prism to a range pole, see
Figure 4.15 at right. Since the range pole is positioned over the point of interest, one needs
to correct the measured distance for the offset between Sc and So.

Figure 4.16 shows an example of a reflector with a zero prism constant; the vertical axis
of reference coincides with the apparent reflection point So.
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Figure 4.14: Measuring a distance using a corner cube reflector. Point So is the apparent reflection point in case
the reflector would consist of air, and 𝑑correct =

𝑑total
2 refers to the distance to this point. Point Sc is the defined

center of symmetry of the reflector. The socalled prism constant 𝐶prism is the distance between Sc and So.

Figure 4.15: In practice, corner cube reflectors are either mounted on their apparent reflection point So (left), or
on their center of symmetry Sc (right). For the case at left, no correction is needed to the measured distance (the
oneway distance equals 𝑑correct = 𝑑 + 𝑤), as the distance — assuming an allair signal path — directly refers to
point So. For the case at right a correction through the socalled prism constant 𝐶prism is needed. The oneway
distance equals 𝑑 + 𝑤, and should be corrected by 𝐶prism in order to make this distance refer to point Sc. The
prism constant should be subtracted from the measured distance: 𝑑 + 𝑤 − 𝐶prism in order to obtain the proper
geometric distance between the total station and the point of reference of the reflector Sc.
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Figure 4.16: A corner cube reflector mounted on its apparent point of reflection So, and consequently 𝐶prism = 0.

The center of symmetry Sc of a corner cube reflector is not its geometric center, nor its
center of mass. It is the point where, if the prism is not exactly directed to the total station,
a minimum line of sight error 𝜉 is made; Figure 4.17 illustrates this.

The value for the prism constant 𝐶prism is generally provided by the equipment manufac
turer. And often this value for the prism constant is already implemented in the instrument’s
firmware, hence, the resulting measured distance presented by the instrument got already
corrected for the prismconstant. A word of caution is in order of course, when the total sta
tion is used with a different prism. Further practical information with regard to the definition
of the prism constant is given in Section A.2.

The measured distance in the instrument is corrected such that apparently the IRlight
emitting diode and the photo diode of the EDM coincide with the vertical axis of the instrument,
as this is the point of reference of the total station, see also Figure 4.20.

Figure 4.18 at left shows a socalled 360degrees prism, which actually consists of six
glass corner cubes neatly put together. This prism can return the signal from the EDM coming
from any (horizontal) direction, which is particularly convenient when continuously tracking a
moving object with a robotic total station.

Instead of using optical corner cube prisms, one can use, with laser ranging, simple self
adhesive retroreflective targets, see Figure 4.18 at right, which can stay on the object of
interest for (permanent) monitoring purposes, for instance during construction works.

Finally we mention that in practice, short distances (up to one hundred meters) can be
measured even without a dedicated reflector. With these socalled reflectorless measure
ments, the objects of interest, for instance walls of buildings, reflect part of the laserlight
back to the total station. Practically this is very convenient as the object of interest then does
not need to be visited with a reflector, and the object can be measured remotely from the
total station setup. With reflectorless measurements typically a red laser is used, see also
Figure 18.6.

4.5. Trigonometric leveling
Total stations are most often used for surveying in the local horizontal plane, for instance to
produce a map with ‘where objects, topography and infrastructure are’. By measuring direc
tions and distances to points of interest, the coordinates of these points can be determined.
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Figure 4.17: A surveyor aims the telescope of the total station at the center of the prism. If the prism is not
directed exactly to the total station, an error may occur in this aiming, this is shown at left and at right with a line
of sight error 𝜉𝑓 and 𝜉𝑏 respectively; in these cases when the center of rotation lies either (far) behind, or in front
of the reflector, the reflector gets also displaced when not properly directed. When the prism is mounted at its
center of symmetry, the error due to not exactly directing the prism to the total station is minimized.

Figure 4.18: At left: 360degrees prism (Leica type GRZ4) which returns the EDM signal coming from any horizontal
direction. At right: selfadhesive retroreflective target, measuring 4 cm x 4 cm, fixed on a concrete bridge.
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Figure 4.19: In a simple local situation, the height difference between the two points is easily obtained through
trigonometric leveling.

With the observed vertical direction, one can also determine a height difference. In this sec
tion we briefly address trigonometric leveling, and we consider only the simple local situation,
see Figure 4.19.

In Figure 4.19 the zenith angle 𝑧 to the target, point 2, is measured, as well as the (slant)
distance 𝑆. These two measurements can be converted into the horizontal distance 𝐻 and
vertical distance 𝑉. Accounting for the height of the total station above the marker (Peg1),
ℎ𝑖, and the height of the target reflector above the marker (Peg2), 𝑟, the geometric height
difference 𝐸 between the two points follows as

𝐸 = ℎ𝑖 + 𝑉 − 𝑟

In order to apply trigonometric leveling over larger distances, one has to account for the
curvature of the Earth and atmospheric refraction, similar as with leveling in Chapter 3, and
one should realize that trigonometric leveling is a geometric method, which is dissociated
from gravity. Only over short distances (just like leveling), trigonometric leveling provides
approximations to orthometric height differences.

4.6. Measurement procedure
In this section we outline the actual measurement procedure with a total station in the field.
It consists of setting up the tripod on which we mount the instrument. Then we level the
instrument and position it right above the marker in the ground, using a plummet, and we focus
the reticle. Eventually we focus the telescope on the reflector and take the measurements
(vertical, and horizontal direction and distance).

4.6.1. Setup the tripod
The setup of the tripod has been described, with leveling, in Section 3.6. One distinct differ
ence is now that the theodolite or total station (usually) should be positioned exactly over the
benchmark or survey marker in the ground. Hence, place the tripod approximately over the
benchmark and make sure that the tripod top plate is approximately horizontal, and fix the
legs, see Figures 3.17 and 3.18.
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Figure 4.20: Mounting a total station on a tripod. Note, in the photograph at right, the marker on the instrument
to measure the height of the instrument above the benchmark in the ground. The marker on the instrument
coincides with the horizontal axis. The instrument height should be measured, with a tape, once the instrument
setup has been completed.

4.6.2. Mounting total station on tripod
Mounting a total station on a tripod goes in a very similar way as for a leveling instrument,
see Figure 4.20. Fix the total station with the big screw to the tripod.

4.6.3. Level the instrument, and center it
As stated in Section 4.1, the theodolite or total station should be set up such that the vertical
axis is aligned with the local plumb line, and, the instrument has to be positioned such that the
vertical axis, when extended downwards, hits the benchmark or survey marker in the ground.
The latter can be achieved in three ways, using an actual plummet, an optical plummet or a
laser plummet, see Figure 4.21.

The optical plummet is most often used, and we present further details on its use, see
Figure 4.22. The optical plummet is built in the tribrach on which the total station is mounted.
It is a kind of (small) telescope viewing in a right angle to the ground. It is calibrated such that
the viewing direction is downward and exactly perpendicular to the disc surface of the tribrach.
Hence, using the circular level in the tribrach, the viewing direction of the optical plummet
can be aligned with the local vertical (along the local plumb line). The steps of focusing the
optical plummet telescope are the same as with leveling in Chapter 3. First adjust the reticle
focusingring to get a clear and sharp view on the crosswires. Then focus on the target point
by adjusting the target focusingring, see Figure 4.22 at right.

Adjust the leveling screws of the tribrach so that the plummet gets aligned with the marker
on the ground. Likely the instrument is not exactly level anymore after this adjustment. Now,
adjust the lengths of the tripod legs (and not the leveling screws) in order to level again the
instrument, using the circular level on the tribrach.

Next, the leveling of the instrument is fine tuned. This is done using a more sensitive level
builtin the total station. This level can be a physical cylinder type spirit level or an electronic
one — the latter one being accessible through the firmware of the total station. The fine
tuning of the leveling is demonstrated in Figure 4.23.

By the fine tuning of the level of the instrument, the instrument may not be centered
exactly over the survey marker in the ground. In order to repair this, release the central fixing
screw a little bit so that you can move the total station — though within limited amount —
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Figure 4.21: Three different implementations of a plummet, in order to get the total station positioned right above
the benchmark or survey marker in the ground. Illustration courtesy of ©Leica Geosystems AG, Heerbrugg, 2021
[20].

Figure 4.22: The tribrach with a builtin optical plummet. Image at right derived from illustration by ©Leica
Geosystems AG, Heerbrugg, 2021 [21], with permission.
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Figure 4.23: Fine tuning the level of the total station. Position the spirit level such that it is aligned with two of the
leveling screws of the tribrach, screws A and B. Use the screws A and B in equal amount to get the bubble of the
spirit level in the center. Next turn the instrument by 90 degrees and use leveling screw C to center the bubble.
And repeat the procedure to check, or to refine the leveling of the instrument.

Figure 4.24: Aiming the telescope of the total station on the center of the reflector.

carefully over the top flat surface of the tripod. Shift the instrument such that the plummet
indicates that the instrument is again centered exactly above the survey marker in the ground.
And tighten the fixing screw again.

Finally, check the level as described above with fine tuning the level. And repeat this step,
as well as shifting the instrument over the top flat surface of the tripod. If the spirit level is
fine in any direction, and the instrument is centered exactly over the marker, one can measure
the instrument height, cf. Figure 4.20 at right, and then proceed to the next step.

4.6.4. Focus the reticle
This is done exactly the same way as with the leveling instrument in Section 3.6, Figure 3.21.

4.6.5. Point instrument to reflector
This is done similarly as with the leveling instrument in Section 3.6. Make sure that the cross
wires in the telescope coincide with the center of the reflector, see Figure 4.24.
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Figure 4.25: Measurement setup with a total station. The vertical, or zenith angle ‘z’ is measured with respect to
local zenith, horizontal direction ‘Hz’ is measured, with respect to an arbitrary zerodirection, and the slope distance
‘S’ is measured. The reflector is a socalled 360 degrees reflector, which returns the EDM measurement signal
from any direction (Figure 4.18 at left). Image derived from illustration by ©Leica Geosystems AG, Heerbrugg,
2021 [20], with permission.

4.6.6. Focus the telescope
This is done similarly as with the leveling instrument in Section 3.6, Figure 3.23.

4.6.7. Take measurements
Figure 4.25 shows the general measurement setup of the total station. Two angles are mea
sured (theodolite function), the horizontal angle ‘Hz’ and the vertical, or zenith angle ‘z’. The
slope or slant distance measurement ‘S’ results from the EDM function of the total station. A
total station is an electronic instrument, and after pointing the telescope on the center of the
corner cube reflector, the only remaining action is to push the measurement button to obtain
the measurements. For surveying in the local horizontal plane, the vertical angle may not be
needed. Typically it is used by the instrument’s firmware to output also the horizontal distance
𝐻, which is computed internally, using ‘z’ and ‘S’

Generally not a single point of interest is surveyed, but instead a whole series of points.
The assistant of the surveyor will visit all the points of interest, and occupy them with the
reflector to allow the surveyor to take measurements. The procedure is shown in Figure 4.26.

Optionally, the zero direction of the horizontal scale can be set, at the start of the survey.
One can choose for instance a point left of all other points and set the reading of the horizontal
angle to zero. In some cases the zero direction is set intentionally when the total station is
pointed to a particular object of interest, or reference. When carrying out a survey with a
tachymeter, for instance at a construction site, it is recommended to include measurements
to a distant object — outside the construction site — for the purpose of verification and/or
(later) reconstruction of the survey.

Then, the actual survey can start, by directing the telescope to the reflector at point 1,
take measurements ‘Hz’, ‘z’ and ‘S’, repeat this for points 2, 3 and 4, in Figure 4.26.

Then, the telescope should be turned to the ‘other face’. This means turning the telescope
by 180 degrees about the horizontal axis, and then, turning the whole instrument by 180
degrees about its vertical axis, see Figure 4.27.

The reason for measuring with the telescope in ‘face left’ and in ‘face right’ position (or
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Figure 4.26: Example of taking a series of measurements with a total station at one setup. Points 1 through 4
with reflectors installed on top of them, are surveyed, once in forward, and once in backward way, indicated by
the steps 1 through 9. Image derived from illustration by ©Leica Geosystems AG, Heerbrugg, 2021 [22], with
permission.

Figure 4.27: Turning the telescope to the ‘other face’.
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Figure 4.28: Total station measurement registration form. The first column Hz contains the horizontal directions,
the second column z the vertical, or zenith angles, the third column S the slope distances, and columns 4 and 5
contain the horizontal H and vertical V distance. Parts A and B correspond to the two ‘faces’ of the instrument.

face I and face II) was explained in Section 4.1 with Figure 4.5.
Next, the same points are measured again, but in reverse order, hence points 4, 3, 2, and

1.
Figure 4.28 shows an example of a measurement registration form for the set up in Fig

ure 4.26.

Figure 4.29: Total station measurement registration form — backside. The first column with directions is copied
from the foreside. Next, the reduced directions are computed, these are the horizontal directions with respect to
the horizontal direction of the first point (hence, actually horizontal angles). Parts A and B correspond to the two
‘faces’ of the instrument; the angles have been measured twice. Differences between the two measurements are
computed, and noted in the last column under ‘Error’, and the averages of the two measurements are computed,
and stored under ‘Average’, these are the input for further data processing.

Typically on the back of the measurement registration form one performs the calculations
for the socalled reduced horizontal directions, the errors and the averaged angles, which
are eventually used in further processing. The back of the measurement registration form is
shown in Figure 4.29.
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4.7. Exercises and worked examples
This section presents two exercises, one on working with a theodolite, and one on the principle
of the Electronic Distance Measurement (EDM) instrument.

Question 1 With a theodolite two directions have been measured, to target points A and
B, both in ‘face left’ and in ‘face right’ mode. The measurements are listed in Table 4.2. What
is the value of symbol ‘X’?

faceleft target direction

A 89.762
B 139.468

faceright target direction

B 339.475
A X.760

Table 4.2: Simplified theodolite measurement form with just observed horizontal directions. Measurements are
given in gon.

Answer 1 Going from face left to face right implies a(n about) 200 gon difference in the
horizontal directions, see Figure 4.27. We move up by 200 gon on the horizontal scale of the
instrument. The horizontal direction to point A was 89.762 gon in faceleft, and hence, in face
right, this becomes 89.762+200.000=289.762 gon, or, as indicated in Table 4.2, 289.760 gon
(as target B has been measured again). Hence X means 289.

Question 2 A distance can be observed by measuring the traveltime of a radio or optical
signal. An Electronic Distance Measurement instrument transmits an infrared or laserlight,
and this light travels forth and back to a reflector. The light has been amplitude modulated
by a 15 MHz pulse signal. What is the distance between the EDM and the reflector, if, inside
the EDM the phase difference between the modulation of the outgoing and received signal
is 𝜋

2 rad, i.e. the received signal (pulse) arrives a quarter wavelength later, compared to the
direct signal?

Answer 2 This question concerns the working principle of the Electronic Distance Mea
surement (EDM) unit, as shown in Figure 4.7. It is given that the phase comparator yields a
phase difference ΔΦ of 𝜋2 rad. This means that the detour of the signal to the reflector and
back, causes the incoming blue signal to be late. The wavelength 𝜆𝑚 is easily found through
𝑐 = 𝜆𝑚𝑓𝑚, with 𝑓𝑚=15 MHz and 𝑐 = 3 ⋅ 108 m/s; the wavelength becomes 𝜆𝑚=20 m (and
we assume here that the refractive index in the Earth’s atmosphere is 𝑛 ≈ 1). The detour, in
terms of distance, is Δ𝜆𝑚 =

1
4𝜆𝑚 = 5 m (hence a quarter wavelength). Next, we have that the

twoway distance equals this quarter wavelength: 2𝑑 = Δ𝜆𝑚 (where so far, we assumed that
there is no ambiguity involved, hence 𝑛 = 0), and thus 𝑑=2.5 m; this is the single way detour
of the signal to the reflector. Accounting for the ambiguity according to 𝑑 = 𝑛

2𝜆𝑚+
1
2Δ𝜆𝑚 with

integer 𝑛, the distance is 2.5 m, 12.5 m, or 22.5 m, or …. The blue signal is late compared
to the red signal, in terms of time, by 1

4
1
𝑓𝑚
= 16.7 ns (nanoseconds), in case 𝑛 = 0, as the

period 𝑇 of a periodic signal is 𝑇 = 1
𝑓 .
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5
Introduction

The development and application of mathematical theory needed to process, analyze, inte
grate and validate geodetic data, such as measurements for land surveying, is referred to
as the discipline of mathematical geodesy. It is about the calculus of observation (in Dutch:
waarnemingsrekening), the validation of measurements and mathematical models, and the
analysis of spatial and temporal phenomena in geosciences, i.e. about parameter estimation,
testing and reliability, and about interpolation and prediction.

An important step in this discipline was made with the discovery of the method of least
squares in the 18th century [23]. It occurred in the fields of astronomy and geodesy, as
scientists and mathematicians sought to provide solutions to the challenges of navigating
the Earth’s oceans. The German Carl Friederich Gauss (17771855) proposed the method of
leastsquares, which allows to make an optimal combination of redundant measurements for
the purpose of determining values for parameters of interest [23], and as such a solution
to an inconsistent system of equations. The French mathematician AdrienMarie Legendre
(17521833) in 1805 published his work on the method of leastsquares (a translation of the
French term ‘méthode des moindres carrés’) in the context of the determination of the orbits
of comets (Nouvelles méthodes pour la détermination des orbites des comètes). Later, in
1809, in a volume on celestial mechanics, Gauss published the leastsquares method, and
claimed he had been using this method already back in 1795, hence earlier than Legendre,
although the latter published it first [23]. Many studies and investigations have been spent
on this dispute between Legendre and Gauss, but generally it is believed that Gauss should
indeed be regarded as the first inventor of the method of leastsquares. Legendre came to the
same method independently, and delivered a clear publication of it. Later, Gauss provided a
probabilistic justification of the method of leastsquares, and proposed the normal or Gaussian
distribution. Today, more than 200 years later, the leastsquares method is frequently used in
a wide variety of scientific and engineering applications.

Further developments in mathematical geodesy followed on advances in the early 20th
century in the field of statistical inference, which is about drawing conclusions from data
which are subject to random variation, for example observational errors or sampling variation.
Statisticians R.A. Fisher (18901962), J. Neyman (18941981) and E. Pearson (18951980)
introduced concepts such as statistical confidence and hypothesis testing [24].

Delft perspective on mathematical geodesy
Delft University of Technology professors J.M. Tienstra (18951951) and W. Baarda (1917
2005), see Figure 5.1, founded the ‘Delft school’ of mathematical geodesy. Worldrenowned
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Figure 5.1: Delft University of Technology professors in mathematical geodesy Jacob Tienstra (18951951) at left
and Willem Baarda (19172005) at right. Photo at left anonymous, from ‘Persoonlijkheden in het Koninkrijk der
Nederlanden in woord en beeld’, Amsterdam, 1938, p. 1470; taken from Wikimedia Commons [9], Public domain.
Photo at right by Axel Smits [25].

contributions have been made in Delft on the subject of statistical hypothesis testing, and
theory was developed, for instance leading to the concept of reliability, and applied to land
surveying networks, enabling the design and analysis of these networks. Later, professor P.J.G.
Teunissen made extensions to the (automated) data quality control of dynamic measurement
systems in navigation and satellite navigation (GPS) applications. In recent years substantial
developments have taken place with regard to the theory for data processing and analysis of
interferometric measurement techniques, such as highprecision GPS and radar interferometry,
while in parallel a clear framework on prediction theory was set up, covering the subject of
interpolation. Furthermore the reliability theory is being extended to risk evaluation for safety
critical applications, such as the navigation of unmanned vehicles, the monitoring of landslide
and subsidence, and other (natural) hazards.

Overview of this part
In the previous part it has been outlined how land surveying measurements are acquired
by means of leveling and tachymetry. In Parts III and IV we continue the exposition of the
acquisition of measurements by means of GPS and a wide range of remote sensing techniques.
The present part, loosely speaking, is about extracting the information of interest from those
measurements. The measurement process is cast in a mathematical model, and based on
the measurements, values are determined for the parameters of interest, most often position
coordinates; after all, surveying and mapping is about, again loosely speaking, ‘what is where’
and ‘where is what’.

Chapters 6 and 7 present a refresher on basic probability and statistics, and Chapter 8 in
troduces the surveyor’s workhorse: leastsquares parameter estimation. Chapter 9 elaborates
on its application in surveying, and Chapter 10 provides an approach of validating the mea
surements for the purpose of measurement quality control. Chapter 11, titled ‘interpolation’,
is about taking measurements of a spatial phenomenon, for instance depth measurements
by echo sounding to determine the seafloor bottom, with these measurements being taken
at certain locations, and then wanting to know about the spatial phenomenon at another
location.

https://commons.wikimedia.org/wiki/File:Jacob_Tienstra.jpg


6
Random variable

6.1. Introduction
Suppose we would like to measure the inner width of a prefab tunnel element, just delivered
to the construction site, in order to check whether it has been built according to requirements
and specifications. To measure the distance in between the two concrete sidewalls, we use a
decent laser distometer, see Figure 6.1. We take a measurement and the result reads 7.451 m.
We ask a colleague to do the same, and when he/she does so, the outcome is 7.453 m. When
a second colleague does, we get 7.454 m, and a third colleague gets 7.452 m, and so on.
The point is that such a measurement is not perfect. If a series of measurements is carried
out, even under unchanged circumstances, we will see a certain spread in the results; the
measurements do not give all the same, exactly true, answer. This is for a number of reasons.
First of all, the instrument is an electronic device, with (free) electrons moving around in its
circuits (as we are not operating at zero Kelvin temperature); they will cause (small) errors in
the reading of the distance.

Second, the concrete wall on one side to which we hold the instrument will not be perfectly
smooth, and so will be the other wall, which has to reflect the laser pulse, used for measuring
the distance. This may cause small differences between two measurements when we hold
the instrument, take a measurement, remove the instrument, and put the instrument again
etc. In addition, you may not hold the instrument completely still during the measurement.
Finally, there are external circumstances which can cause errors in the measurement process,
such as reduced visibility in the tunnel, due to dust and smoke, and motions and vibrations
of the tunnel element itself. Generally, conditions at a construction site are suboptimal … for

Figure 6.1: Laser distometer for measuring distances.
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carrying out accurate measurements. A measurement does not give exactly the true answer;
but, hopefully, its value is close though.

6.2. Random variable
The whole exercise of using a certain instrument, carrying out the measurement in a certain
way (e.g. holding the instrument here, or there) and obtaining the result, is captured  in
a mathematical sense  in a random variable. The bottom line is that the outcome of our
measurement (generally) will be close to the desired, true value (which we do not know), but
it will not be perfect  it will contain some amount of error. In the sequel, we will use the
following notation: 𝑦 for the measurement value, 𝑥 for the unknown (true) distance, and 𝑒
for the (random) measurement error, so that we have

𝑦 = 𝑥 + 𝑒 (6.1)

A random variable is a mathematical concept, it is denoted by a symbol with an under
score, such as 𝑦. We can obtain a realization of this random variable, by actually taking a
measurement, a sample 𝑦, or with an index 𝑦1, where the index denotes that this is the first
measurement. We can repeat the measurement a number of times to obtain 𝑦1, 𝑦2, ...., 𝑦𝑁.
Later, we refer to 𝑦 as the observable, the ’thing which can be observed’, and 𝑦𝑖 is one of
the observations (𝑦𝑖 has a single, fixed value, namely the numerical outcome of that specific
measurement, for example 𝑦3=7.450 m).

Then (6.1) can be written as

𝑦 = 𝑥 + 𝑒 (6.2)

The observable 𝑦 equals the true, but unknown 𝑥 (distance, for instance), plus a random
measurement error 𝑒, and 𝑒 is referred to as an unobservable statistical error (we will never
know this error in practice). We typically assume that the random measurement error 𝑒 is —
on average — equal to zero. Individual realizations 𝑒1, 𝑒2, … , 𝑒𝑁 are not equal to zero, but the
average over a large number of realizations of 𝑒 will be close to zero.

The parameters we are trying to measure are of the continuous type. The unknown inner
width of the tunnel element 𝑥 is a distance, which can have any real value, hence 𝑥 ∈ ℝ. To
allow for automated processing of the measured distance, the observation available to the user
is presented and stored using a finite number of bits and hence decimals. The observation
has been digitized and actually become discrete, though we will not address the subject of
quantization here. By approximation, it still is a continuous quantity.

6.3. Histogram
When the measurement has been repeated a number of times, all measurements together
can be presented in terms of a histogram. The range (or a part of it) of variable 𝑦 is divided
into 𝑘 intervals (bins or classes) of equal length ℎ, the bin width. With a chosen origin 𝑦𝑜, we
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have the following intervals around 𝑦𝑜

𝑗 = 1 [𝑦𝑜 −
𝑘
2ℎ, 𝑦𝑜 − (

𝑘
2 − 1)ℎ⟩

⋮ ⋮
⋮ [𝑦𝑜 − 2ℎ, 𝑦𝑜 − ℎ⟩
𝑗 = 𝑘

2 [𝑦𝑜 − ℎ, 𝑦𝑜⟩
𝑗 = 𝑘

2 + 1 [𝑦𝑜 , 𝑦𝑜 + ℎ⟩
⋮ [𝑦𝑜 + ℎ, 𝑦𝑜 + 2ℎ⟩
⋮ ⋮
𝑗 = 𝑘 [𝑦𝑜 + (

𝑘
2 − 1)ℎ, 𝑦𝑜 +

𝑘
2ℎ⟩

(6.3)

where we assumed 𝑘 to be even.
The 𝑁 samples, assumed to be all in [𝑦𝑜 −

𝑘
2ℎ, 𝑦𝑜 +

𝑘
2ℎ⟩, are divided over the bins. The

observed (absolute) frequencies (or cell counts) in the 𝑘 bins are denoted by 𝑓𝑗, with ∑
𝑘
𝑗=1 𝑓𝑗 =

𝑁.
The histogram, see also Chapter 17 in [2], is now created by plotting

̂𝑓(𝑦) =
𝑓𝑗
𝑁ℎ with 𝑦 ∈ interval 𝑗 (6.4)

as a function of 𝑦; ̂𝑓(𝑦) = 0 outside the 𝑘 intervals.
The function ̂𝑓(𝑦) is an intervalwise (width ℎ) constant function. Figure 6.2 gives an exam

ple. The
𝑓𝑗
𝑁 are the relative frequencies, and ℎ in the denominator assures that ∫

∞
−∞

̂𝑓(𝑦)𝑑𝑦 = 1,
that is, the area under the histogram equals 1. This enables direct comparison of histograms
of different data sets (with different bin widths ℎ, and sample sizes 𝑁).

For the set of distance measurements, most of the measurements are close to the value
of 7.452 m. The further we go away from 7.452 m, the fewer observed values we see. This
is typical behaviour in practice. This behaviour is formalized in a probability density function
(PDF) of the random variable. The PDF is a mathematical formula, describing the uncertain
outcome of our distance measurement. It gives the probability density as a function of the
value of the observed parameter 𝑦. The PDF describes the distribution of the random variable,
and it is a mathematical model for the histogram.

The theoretical probability density function 𝑓(𝑦) can—for comparison—be directly imposed
on the histogram ̂𝑓(𝑦), as is done in Figure 6.2.

The bin width ℎ controls the amount of ‘smoothing’. In practice one has to match the
interval [𝑦𝑜 −

𝑘
2ℎ, 𝑦𝑜 +

𝑘
2ℎ⟩ with 𝑦min and 𝑦max, and as a rule of thumb one often sets the

number of bins to 𝑘 = √𝑁. Also in practice, in order to focus on the core of the distribution in
case there are outlying measurements, one may want to match the interval with e.g. 𝑞.01 and
𝑞.99, the 1st and 99th (empirical) percentiles respectively, see (6.20), rather than 𝑦min and
𝑦max.

The histogram is useful for presentation of the data. It gives a first impression of the
probability density which lies at the basis of the samples. One might for instance visually
judge — preliminary — whether normality is not unlikely. One must however, be very careful.
The picture can be manipulated, certain features can be masked or overemphasized, by the
choice of the origin 𝑦𝑜 and the bin width ℎ.

6.4. Probability Density Function
A histogram is useful to visualize a (big) set of repeated measurements. In practice, where
‘time is money’, one does not want to repeat measurements. Though one still would like to
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Figure 6.2: Histogram with binsize ℎ = 0.001 m, 𝑘 = 20 bins, and center 𝑦𝑜 = 7.452 m. The vertical axis gives
the standardized relative frequency. The data, with sample size 𝑁 = 400, were generated here from a normal
distribution with 𝑥 = 7.452 m and 𝜎 = 0.002 m. The curve of this theoretical probability density function is
imposed.

have some measure about the uncertainty that can be expected in the outcome, in particular,
how big the chance is that the outcome is off from the truth, by more than a certain amount.
Therefore, the histogram is captured by a Probability Density Function (PDF), denoted by 𝑓(𝑦),
for the random variable 𝑦. It gives a mathematical expression for the probability density, as a
function of the value 𝑦 of the random variable.

A probability density function 𝑓(𝑦) has to satisfy two general requirements:

𝑓(𝑦) ≥ 0 ∀ 𝑦 and ∫
∞

−∞
𝑓(𝑦)𝑑𝑦 = 1

The (cumulative) probability distribution function is denoted by 𝐹(𝑦) and can be found by

𝐹(𝑦) = ∫
𝑦

−∞
𝑓(𝑦)𝑑𝑦 (6.5)

or the other way around

𝑓(𝑦) = 𝜕𝐹(𝑦)
𝜕𝑦 (6.6)

𝐹(𝑦) is a monotonic nondecreasing function, and provides a mapping from the ℝ into [0, 1].
It holds that the probability 𝑃[𝑦 ≤ 𝑘] = 𝐹(𝑘).

6.4.1. Normal distribution
When 𝑦 has a normal or Gaussian distribution, the probability density function reads

𝑓(𝑦) = 1
√2𝜋𝜎

𝑒−
(𝑦−𝑥)2
2𝜎2 (6.7)

where 𝑥 is the mean, and 𝜎 the standard deviation (𝜎2 the variance); a proof can be found
in Appendix B.1; the function is completely specified by these two parameters 𝑥 and 𝜎. The
density is a (unimodal) bellshaped curve, see Figure 6.3 on the left. Often this distribution is
denoted as 𝑦 ∼ 𝑁(𝑥, 𝜎2), where 𝑥 represents the mean, and 𝜎2 the variance.
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Figure 6.3: Standard normal, or Gaussian distribution, 𝑧 ∼ 𝑁(0, 1) with 𝑥 = 0 and 𝜎 = 1. On the left the probability
density function 𝑓(𝑧). On the right the cumulative probability distribution function 𝐹(𝑧); as variable 𝑧 runs from
−∞ to ∞, the probability runs from 0 to 1.

In practice, the manufacturer of the equipment (e.g. of the laser distometer), has analyzed
histograms of numerous repeated measurements, in the field, and in the lab, and provides
users with information, stating that the error in the measurements will follow a normal dis
tribution, with zero mean (hence on average, the measurement is correct), and a certain
standard deviation, e.g. 𝜎=0.002 m. With the random variables in (6.2) we have 𝑦 = 𝑥 + 𝑒
and hence, 𝑒 ∼ 𝑁(0, 𝜎2), and 𝑦 ∼ 𝑁(𝑥, 𝜎2).

When random variable 𝑧 has the following distribution 𝑧 ∼ 𝑁(0, 1), it is said to be standard
normally distributed, see Figure 6.3. The cumulative probability distribution function (CDF) 𝐹
of 𝑧 is also denoted as Φ(𝑧). Appendix C provides a table of the standard normal distribution.
Given are the probabilities 𝛼, as the right tail probabilities 𝛼 = 1 − Φ(𝑟𝛼), where 𝑃[𝑦 ≤ 𝑟𝛼] =
Φ(𝑟𝛼).

In practice not all observables are normally distributed. There are actually many differ
ent probability density functions — the normal one is certainly not the only one. Later, in
Section 9.5, the Chisquared distribution will be introduced.

6.5. Moments: mean and variance
In this section we present several characteristic measures of probability density functions.
Most common are the mean and the variance. We will consider them from a theoretical
(formal) point of view (Section 6.5.1), as well as from a practical (empirical) point of view
(Section 6.5.2).

6.5.1. Formal moments
The expectation of 𝑦 about some constant 𝜗 reads

𝐸′(𝑦) = ∫
+∞

−∞
(𝑦 − 𝜗)𝑓(𝑦) 𝑑𝑦 (6.8)

When we take, as usual, the expectation about zero (𝜗 = 0), we obtain the well known first
moment, or mean,

𝐸(𝑦) = ∫
+∞

−∞
𝑦𝑓(𝑦) 𝑑𝑦 (6.9)

and it holds that 𝐸′(𝑦) = 𝐸(𝑦) − 𝜗.
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When 𝑦 is distributed as 𝑦 ∼ 𝑁(𝑥, 𝜎2), as in (6.7), it can be shown that 𝐸(𝑦) = 𝑥, see
Appendix B.1. It gives the location (the center) of the normal curve.

The second central moment, or variance is

𝐷(𝑦) = 𝐸((𝑦 − 𝐸(𝑦))2) = ∫
+∞

−∞
(𝑦 − 𝐸(𝑦))2𝑓(𝑦) 𝑑𝑦 (6.10)

The word ‘central’ refers to the fact that the moment is taken about the mean 𝐸(𝑦). We denote
the variance by 𝐷(.) (dispersion), rather than 𝑉𝑎𝑟(.) as done for instance in [2], and often the
symbol 𝜎2 is used for the variance of a random variable (and 𝜎 for standard deviation). Later,
we will use the index 𝑦 to denote the variance of 𝑦, hence 𝜎2𝑦 .

When 𝑦 is distributed as 𝑦 ∼ 𝑁(𝑥, 𝜎2), as in (6.7), it can be shown that indeed the variance
equals 𝐷(𝑦) = 𝜎2, see Appendix B.1. The standard deviation 𝜎 describes the width of the
normal curve. It presents the spread in the result; the standard deviation 𝜎 is a numerical
measure of the uncertainty, or conversely of precision (𝜎 small = little uncertainty = high
precision; 𝜎 large = large uncertainty = low or poor precision).

6.5.2. Empirical moments
We will now consider the empirical equivalents of the moments discussed above. Therefore
we assume to have 𝑁 realizations of the random variable 𝑦. The measurement has been
repeated (under unchanged conditions), and as a result we have 𝑁 outcomes 𝑦1, 𝑦2, … , 𝑦𝑁.
These 𝑁 measurements are used to come up with estimates for the mean and variance, i.e to
come up with the sample mean and sample variance.

The average deviation from some known constant 𝜗 reads

�̂�′ = 1
𝑁

𝑁

∑
𝑖=1
(𝑦𝑖 − 𝜗) (6.11)

and all outcomes 𝑦1, 𝑦2, … , 𝑦𝑁 are first ‘corrected for’ 𝜗 , and then the average is taken. The
well known first sample moment is the (arithmetic) mean about zero (𝜗 = 0)

�̂� = 1
𝑁

𝑁

∑
𝑖=1
𝑦𝑖 (6.12)

which is denoted by 𝑥 with a ‘hat’symbol, meaning that it is an estimate for the unknown true
mean 𝑥 of the random variable 𝑦, and this estimate is based on data/measurements; (6.12)
is the empirical counterpart of (6.9). It holds that �̂�′ = �̂� − 𝜗.

The expectation (or mean) of 𝑦, 𝑥, is unknown, and will remain unknown forever; we can
only come up with an estimate �̂� for this parameter.

The second central sample moment (hence second sample moment about the mean) reads

̂𝜎′2 = 1
𝑁

𝑁

∑
𝑖=1
(𝑦𝑖 − �̂�)2 (6.13)

which is an unbiased estimate for the variance, once the mean 𝑥 is known (apriori), and
substituted for �̂� in the above equation. Unbiasedness is generally a desirable property for
an estimator, meaning that on average the result is spoton (see also Section 8.3). When the
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mean is not known (apriori), estimate (6.13), with �̂� from (6.12) inserted, is not unbiased,
meaning that on average it is ‘somewhat off’. If the mean is unknown, we generally use the
following estimate for the variance instead

�̂�2 = 1
𝑁 − 1

𝑁

∑
𝑖=1
(𝑦𝑖 − �̂�)2 (6.14)

which is unbiased. Generally (6.14) is referred to as the sample variance; it is the empirical
counterpart of (6.10). The square root of estimate (6.14) will be our default estimate, the
sample standard deviation.

The difference of 𝑁 and 𝑁 − 1 in the denominator in (6.13) and (6.14) is negligible in
practice, when 𝑁 is large.

Note that in the second case with (hypothetically) only one observation 𝑦1 (𝑁 = 1), the
mean (6.12) becomes �̂� = 𝑦1 and the variance (6.14) is undefined — from one sample it is
not possible to estimate both mean and variance. Estimate ̂𝜎′2 would give zero in this case.

The difference 𝑦𝑖 − �̂� in the above equations will later be denoted by �̂�, and referred to as
the measurement residual

�̂�𝑖 = 𝑦𝑖 − �̂� (6.15)

see Section 10.1, where 𝑒 is the unknown measurement error, cf. (6.1), and �̂� is the estimated
error. Residual �̂�𝑖 = 𝑦𝑖 − �̂� equals the difference of the observation 𝑦 and the estimated mean
�̂� (or, the average fitted to the observations).

In the context of Section 10.1.1, the second sample moment about the mean (6.13) can
be regarded as the mean of the squared residuals, see also Section 10.1.4, as ∑𝑁𝑖=1(𝑦𝑖 − �̂�)2
is the sum of squared residuals.

6.5.3. Empirical moments: precision [*]
The estimates for the mean and variance (6.12) and (6.13) can be shown to result as Maximum
Likelihood (ML) estimates from the model 𝐸(𝑦) = 𝐴𝑥, with 𝑦 = (𝑦

1
, 𝑦
2
, … , 𝑦

𝑁
)𝑇, 𝐴 = (1,… , 1)𝑇,

and 𝐷(𝑦) = 𝜎2𝐼𝑁, with 𝑦 normally distributed, cf. Chapter 8 (8.2). Also, it can be shown that
the estimator �̂�2 (6.13) or (6.14) is not correlated with �̂� (6.12).

As the estimates �̂� for the mean, and �̂�2 for the variance are based on the measurements
(which are not perfect), we can expect these estimates to be not perfect either. The estimators
are unbiased, meaning that 𝐸(�̂�) = 𝑥 and 𝐸(�̂�2) = 𝜎2. The variances of the estimators in
(6.12) and (6.14) are given (without proof) by

𝜎2�̂� =
𝜎2
𝑁 (6.16)

and

𝜎2�̂�2 =
2𝜎4
𝑁 − 1 (6.17)

The more measurements we take (bigger 𝑁) the smaller these variances get, which is intu
itively appealing. The more data you use, the more precise these estimators (for mean and
variance) get. The expression for 𝜎2�̂�2 holds only for normally distributed observables.

Typically one is interested in the standard deviation rather than the variance, hence with

�̂� = 𝐺(�̂�2) = √�̂�2 (the standard deviation is a nonlinear function of the variance, through the
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squareroot) and through the firstorder approximation 𝜕𝐺
𝜕�̂�2 =

1
2√�̂�2 , one can use (7.12), and

obtain 𝜎�̂� ≈
𝜎�̂�2
2√�̂�2 =

𝜎�̂�2
2�̂� (the standard deviation of the estimator for the standard deviation),

and use in this case 𝜎�̂�2 = √2𝜎2
√𝑁−1 .

6.6. Mean square error: accuracy
In practice, a measurement may be biased. This means that on average it does not deliver
(the value of) the parameter which we hope it delivers. The bias is another (typically un
desired) parameter 𝜗, which enters the equation: 𝑦 = 𝑥 + 𝜗 + 𝑒. Here, 𝑥 is the unknown
parameter in which our interest lies, 𝑦 is the observable (which is a random variable), 𝑒 is the
random measurement error (for which we assume that it has zero mean, hence, it will cause
individual measurements (samples) to be off from the true value, but, taking the average over
a large number of (repeated) measurements, will provide an outcome close to the true and
wanted value), and 𝜗 represents the bias, or (constant) offset in the measurement, which is
a systematic effect.

In terms of the laser distometer, one can think of an unwanted time delay of the signal in
the electronic circuitry of the device, which translates into a certain fixed error (offset) in the
traveltime of the laser pulse, and hence into the measured distance — the effect is there all
the time (also in repeated measurements).

Systematic errors also include scaling effects, e.g. 𝑦 = 𝜆𝑥 + 𝑒, with 𝜆 as a scale factor, but
this is beyond the scope of this book.

In this section, we present a measure of the spread in the uncertain outcome of the
measurement, which includes also the unwanted biaspart. In the end, we would like to have
a measure of how close our observation is to the true (wanted) distance. Instead of the
variance, we consider the mean squared error (MSE), cf. also Section 20.3 in [2].

In the previous section there was no bias, and the expectation of the observable was
𝐸(𝑦) = 𝑥, as 𝑦 = 𝑥 + 𝑒. Now, with 𝑦 = 𝑥 + 𝜗 + 𝑒, we have instead 𝐸(𝑦) = 𝑥 + 𝜗, where
𝜗 is a bias. The variance (6.10) is the second moment about the mean of the observable
𝐸(𝑦) = 𝑥 + 𝜗.

But — as an allin measure — we are now interested in the second moment about 𝐸′(𝑦) =
𝑥, (6.8), namely about the true distance 𝑥. Therefore one defines the Mean Squared Error
(MSE)

𝐷′(𝑦) = ∫
+∞

−∞
(𝑦 − 𝐸′(𝑦))2𝑓(𝑦) 𝑑𝑦 = 𝐸((𝑦 − 𝐸′(𝑦))2)

instead of the variance (6.10), and the mean 𝐸(𝑦) (6.9) has been replaced by the true distance
𝐸′(𝑦) = 𝑥 (6.8).

We will show that the MSE can be written as 𝐷′(𝑦) = 𝜎2 + 𝜗2. Therefore we develop the
MSE into

𝐷′(𝑦) = 𝐸((𝑦 − 𝐸′(𝑦))2) = 𝐸((𝑦 − 𝐸(𝑦) + 𝐸(𝑦) − 𝐸′(𝑦))2)

= 𝐸((𝑦 − 𝐸(𝑦))2 + (𝐸(𝑦) − 𝐸′(𝑦))2 + 2(𝑦 − 𝐸(𝑦))(𝐸(𝑦) − 𝐸′(𝑦)))

= 𝐸((𝑦 − 𝐸(𝑦))2 + (𝐸(𝑦) − 𝐸′(𝑦))2)

as the factor (𝐸(𝑦)−𝐸′(𝑦)) is just a constant, and taking it out of the expectation operator in
the crossterm, we are left with 2(𝐸(𝑦) − 𝐸′(𝑦))𝐸(𝑦 − 𝐸(𝑦)), which is just zero as 𝐸(𝐸(𝑦)) =
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𝐸(𝑦). Hence,

𝐷′(𝑦) = 𝐸((𝑦 − 𝐸(𝑦))2 + (𝐸(𝑦) − 𝐸′(𝑦))2) = 𝜎2 + 𝜗2

the MSE equals the variance plus the squared bias. The MSE accounts for the spread in the
result, as well as a bias, when present. When there is no bias 𝜗 = 0, the MSE simply equals
the variance 𝜎2.

The name of Mean Squared Error (MSE) explains by recognizing that we take the error (in
our case, by how much 𝑦 deviates from the true value 𝐸′(𝑦) = 𝑥), square it, and eventually
take the mean (expectation), as the observable 𝑦 is a random variable (in general we have
no knowledge or control about the random error 𝑒 included in 𝑦). The MSE provides us with
a general, overall measure of the deviation we can expect in the outcome; the MSE measures
accuracy.

According to [26] accuracy is ‘the state of being exact or correct’, with the specialized
technical subsense as ‘the degree to which the result of a measurement or calculation matches
the correct value or a standard’; it represents the degree of closeness of a measurement of a
certain quantity to the actual true, or reference value of that quantity.

The spread in the outcome of a repeated experiment is referred to as repeatability; the
degree to which repeated measurements, under unchanged conditions, show same results.
The formal notion of repeatability is precision. The standard deviation 𝜎, or variance 𝜎2, is
a measure of precision. For a common unimodal Probability Density Function (PDF), the
standard deviation measures the width of this formal function.

Loosely spoken, one could say that: ‘accuracy equals precision plus bias’.

6.6.1. Empirical MSE
The Mean Squared Error (MSE) can be used in practice for instance in a calibration or verifica
tion campaign. With the laser distometer, the manufacturer may have a calibration testrange
available, for which actual distances are known already (known with a much higher accuracy,
better by orders of magnitude than what the laser distometer will deliver, for instance by
using different equipment). Then, the laser distometer is employed on the testrange, and
the spread of the (repeated) measurements 𝑦1, 𝑦2, … , 𝑦𝑁 is quantified by the second moment
about the true distance 𝑥, which is known in this case (and not about the mean). If — unex
pectedly — a bias is present in the measurements, it will be reflected in the resulting mean
squared error (MSE).

Also, one could correct the obtained measurements beforehand for the known distance,
therefore be dealing with samples of (𝑦 − 𝑥) = 𝜗 + 𝑒, which are assumed to present a zero
mean error, as we are initially not aware of the bias 𝜗. Next, taking the second (sample)
moment about zero yields the Mean Squared Error (MSE).

𝑀𝑆𝐸 = 1
𝑁

𝑁

∑
𝑖=1
(𝑦𝑖 − 𝑥)2 (6.18)

In practice one often takes the square root of the MSE, leading to the Root Mean Squared
Error (RMS) or (RMSE), which is in units of the observed quantity.

The above expression for the empirical MSE looks very much like the second sample mo
ment about the mean (6.13), and (6.14), but carefully note that in (6.18) the true value 𝑥 is
involved, whereas in (6.13), and (6.14), it is the estimated mean �̂�.
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case 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 �̂� �̂�′ 𝑅𝑀𝑆𝐸

1 7.452 7.454 7.450 7.453 7.451 7.452 0.001 0.001
2 7.452 7.462 7.442 7.457 7.447 7.452 0.007 0.007
3 7.459 7.461 7.457 7.460 7.458 7.459 0.001 0.007

Table 6.1: Three different cases of testing a laser distometer on a calibrated distance. The true distance is
𝑥=7.452 m. Each time 𝑁=5 measurements have been taken. The sample mean (6.12), the (square root of the)
second order sample moment (6.13), as an approximation to the sample standard deviation, and the Root Mean
Squared Error √𝑀𝑆𝐸 (6.18) have been computed (in the latter, 𝑥 has been replaced by �̂�′). All values are in [m].

7.448 7.452 7.456

case 1

7.4547.4507.4467.4447.442 7.458 7.4627.460

7.448 7.452 7.456

case 2

7.4547.4507.4467.4447.442 7.458 7.4627.460

7.448 7.452 7.456

case 3

7.4547.4507.4467.4447.442 7.458 7.4627.460

x

x

x

Figure 6.4: Three different cases of testing a laser distometer on a calibrated distance. The true distance is
𝑥 = 7.452 m, indicated in green. Each time 𝑁 = 5 measurements have been taken, shown by little blue circles.

6.6.2. Example on bias, precision and accuracy
With a large bias, the observable can be very precise (small random error), but it will not be
accurate. With a big spread (large standard deviation), the observable is neither precise, nor
accurate.

Suppose a laser distometer is being tested on an accurately known distance, with 𝑥=7.452 m.
Five measurements are taken (𝑁=5), and the MSE is computed, based on the known distance
𝑥, hence (6.18) can be rewritten (by subtracting and adding the term �̂� in between the brack
ets) into

𝑀𝑆𝐸 = 1
𝑁

𝑁

∑
𝑖=1
(𝑦𝑖 − �̂�)2 +

1
𝑁

𝑁

∑
𝑖=1
(�̂� − 𝑥)2

in a way much similar to the variance plus bias decomposition of the MSE. The first term is the
second sample moment ̂𝜎′2 (6.13), which is approximately equal to the (estimated) variance
(when 𝑁 is large), and the second term, with �̂� in (6.12), equal to just (�̂� − 𝑥)2, is the square
of the estimated bias, as �̂� is the (ordinary) mean of the observations, which now includes the
bias 𝜗, and 𝑥 is the true distance.

We consider three different cases. They are listed in Table 6.1. In the first case the distance
observable is obviously both precise (small standard deviation) and accurate (small MSE). In
the second case the observable is not precise (big standard deviation) and not accurate (big
MSE). In the first two cases there is no bias. In the third case, the observable is again precise
(small standard deviation), but it is not accurate (big MSE), due to a bias in the measurements,
the sample mean deviates a lot from the known distance (7.459 m versus 7.452 m).

Figure 6.4 displays the three cases, and Table 6.2 presents the summary in terms of the
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case precise accurate

1 yes yes
2 no no
3 yes no

Table 6.2: Summary on the precision and accuracy of the distance observable in three different cases of testing a
laser distometer on a calibrated distance.

x y

f(y)

1.96 σ 95%

σ

Figure 6.5: Normal probability density function (PDF) 𝑓(𝑦). The width of this function represents the uncertainty
in measured outcomes of the observable 𝑦. When the experiment could be repeated many times, the width of the
PDF would reflect the spread in the outcome, for instance the observed distances. When the distance observable is
normally distributed, the 1sigma (𝜎) interval to both sides about the mean 𝑥 contains about 68% of the samples
(it is referred to as the 68% interval), and 95% of the samples (in yellow) will lie in the interval [1.96 𝜎, 1.96 𝜎]
about the mean 𝑥.

distance observable being precise or not, and accurate or not. In some sources, you may find
that case 2 is not precise, but, surprisingly, is accurate. The cause of this confusion may lie
in the fact that in case 2 the distance observable is not biased, and thereby averaging can be
used to reduce the uncertainty. According to (6.16), the standard deviation of the mean is
smaller by a factor √𝑁, when the mean is taken over 𝑁 samples. In case 2, a single distance
observable is not precise, but the mean over all five together could be, and hence, all together
they could provide a result which is close to the truth (and thereby — confusingly — rated
accurate).

In case 3, the measurements are biased. This bias is preserved, when taking the average
over all five measurements. The result will stay (far) off from the true value.

6.7. Probabilities and intervals
The Probability Density Function (and hence, also the Cumulative Distribution Function (CDF))
are mathematical concepts, which are very useful in practice, once one would like to compute
probabilities, specifically, probabilities that a certain random variable lies in a certain interval.

𝑃[𝑎 ≤ 𝑦 ≤ 𝑏] = ∫
𝑏

𝑎
𝑓(𝑦) 𝑑𝑦 = 𝐹(𝑏) − 𝐹(𝑎) (6.19)

A normal probability density function 𝑦 ∼ 𝑁(𝑥, 𝜎2) is shown in Figure 6.5.
Through the PDF (and CDF), probabilities and intervalbounds are intimately related. The

𝑝th quantile (with 𝑝 a number between 0 and 1), or the 100𝑝th percentile of the distribution
of 𝑦 is the smallest number 𝑞𝑝 such that

𝐹(𝑞𝑝) = 𝑃[𝑦 ≤ 𝑞𝑝] = 𝑝 (6.20)
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Quantiles and percentiles can also be obtained empirically, from the observed data. Sup
pose that we have 𝑁 samples of a certain random variable, then we order the samples as
cendingly, and each sample basically represents a probability of 1

𝑁 . When a proportion 𝑝 is
less than a certain number 𝑘 (i.e. 100𝑝% of the samples have all values less than 𝑘), and a
proportion 1 − 𝑝 is greater than this number, this number 𝑘 is the 100𝑝th empirical quantile,
or the 100𝑝th sample percentile.

For realizations of a random variable (error), which is (or can be) assumed to have zero
mean, one is generally interested in just themagnitude of the error. Then typically the absolute
value is taken of the samples, they are ordered ascendingly, and then the empirical percentile
is determined. In that case, the corresponding formal 100𝑝th percentile is defined as

𝑃[|𝑦| ≤ 𝑞𝑝] = 𝑝

6.8. Exercises and worked examples
This section presents a number of problems and worked answers.

Question 1 A random variable is normally distributed, and has zero mean, and standard
deviation equal to 1. You could think of this random variable as the measurement error 𝑒,
for instance of an observable with the laser distometer, and units in millimeters. Compute the
probability that a single sample of this random variable will have a value of 1.27, or less. This
is, compute the probability 𝑃[𝑒 < 1.27].

Answer 1 The random variable has a standard normal distribution, 𝑒 ∼ 𝑁(0, 1), which
is tabulated in Appendix C. We need 𝑃[𝑒 < 𝑟𝛼] = Φ(𝑟𝛼), with 𝑟𝛼 = 1.27. The table gives
probabilities 𝛼, as the right tail probabilities 𝛼 = 1−Φ(𝑟𝛼), rather than left tail. With 𝑟𝛼 = 1.27,
we obtain 𝛼 = 0.1020, hence the requested probability is 𝑃[𝑒 < 𝑟𝛼] = Φ(𝑟𝛼) = 1−𝛼 = 0.8980.

Question 2 A random variable is normally distributed, and has zero mean, and standard
deviation equal to 1, identical to question 1. Compute the probability that a single sample
of this random variable will have a value of 1.27, or less. This is, compute the probability
𝑃[𝑒 < −1.27].

Answer 2 The random variable has again a standard normal distribution, 𝑒 ∼ 𝑁(0, 1),
which is tabulated in Appendix C. We need 𝑃[𝑒 < −𝑟𝛼] = Φ(−𝑟𝛼), with 𝑟𝛼 = 1.27. The
table gives probabilities 𝛼, as the right tail probabilities 𝛼 = 1 − Φ(𝑟𝛼), but only for positive
arguments. However, the normal distribution is symmetric about its mean. Hence, when the
mean is zero, we have Φ(−𝑟𝛼) = 𝑃[𝑒 < −𝑟𝛼] = 𝑃[𝑒 > 𝑟𝛼] = 1 − 𝑃[𝑒 < 𝑟𝛼] = 1 − Φ(𝑟𝛼). With
𝑟𝛼 = 1.27, we obtain 𝛼 = 0.1020, hence the requested probability is 𝑃[𝑒 < −𝑟𝛼] = 𝛼 = 0.1020.

Question 3 A random variable is normally distributed, and has zero mean, and standard
deviation equal to 1, identical to Question 1. Compute the probability that a single sample
of this random variable will have a value of 1.23, or more. This is, compute the probability
𝑃[𝑒 > −1.23].

Answer 3 The random variable has again a standard normal distribution, 𝑒 ∼ 𝑁(0, 1),
which is tabulated in Appendix C. We need 𝑃[𝑒 > −𝑟𝛼] = 1 − Φ(−𝑟𝛼), which is 1 − Φ(−𝑟𝛼) =
1 − (1 − Φ(𝑟𝛼)) = Φ(𝑟𝛼)), with 𝑟𝛼 = 1.23. The table gives probabilities 𝛼, as the right tail
probabilities 𝛼 = 1 − Φ(𝑟𝛼). With 𝑟𝛼 = 1.23 we obtain 𝛼 = 0.1093, hence the requested
probability is Φ(𝑟𝛼) = 1 − 𝛼 = 0.8907.

Question 4 A random variable is normally distributed, and has zero mean, and standard
deviation equal to 1, identical to Question 1. Compute the probability that a single sample of
this random variable will have a value lying in between 2.00 and 1.50. This is, compute the
probability 𝑃[−2.00 < 𝑒 < 1.50].
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Answer 4 The random variable has a standard normal distribution, 𝑒 ∼ 𝑁(0, 1), which is
tabulated in Appendix C. We need 𝑃[−𝑟𝛼,1 < 𝑒 < 𝑟𝛼,2] = Φ(𝑟𝛼,2) − Φ(−𝑟𝛼,1) = Φ(𝑟𝛼,2) − (1 −
Φ(𝑟𝛼,1)), with 𝑟𝛼,1 = 2.00 and 𝑟𝛼,2 = 1.50. With the table we obtain 𝑃[−2.00 < 𝑒 < 1.50] =
(1 − 0.0668) − (1 − (1 − 0.0228)) = 0.9104.

Question 5 A random variable is normally distributed, and has zero mean, and standard
deviation equal to 1, identical to Question 1. For what boundary value 𝑟𝛼 holds that the
probability that a single sample of this random variable will have a value of 𝑟𝛼, or less, equals
0.975? This is, solve the probability statement 𝑃[𝑒 < 𝑟𝛼] = 0.975, for 𝑟𝛼.

Answer 5 The random variable has a standard normal distribution, 𝑒 ∼ 𝑁(0, 1), which is
tabulated in Appendix C. We need 𝑃[𝑒 < 𝑟𝛼] = Φ(𝑟𝛼) = 0.975, or 𝛼 = 0.025, given in the
table. This yields 𝑟𝛼 = 1.96.

Question 6 A random variable is normally distributed, and has zero mean, and standard
deviation equal to 1, identical to Question 1. For what boundary value 𝑟𝛼 holds that the
probability that a single sample of this random variable will have a value in between −𝑟𝛼 and
𝑟𝛼, equals 0.95? This is, solve the probability statement 𝑃[−𝑟𝛼 < 𝑒 < 𝑟𝛼] = 0.95 for 𝑟𝛼.

Answer 6 The random variable has a standard normal distribution, 𝑒 ∼ 𝑁(0, 1), which is
tabulated in Appendix C. We need 𝑃[−𝑟𝛼 < 𝑒 < 𝑟𝛼] = Φ(𝑟𝛼)−Φ(−𝑟𝛼) = Φ(𝑟𝛼)− (1−Φ(𝑟𝛼)) =
0.95. This equals Φ(𝑟𝛼)−(1−Φ(𝑟𝛼)) = 2Φ(𝑟𝛼)−1 = 0.95, or Φ(𝑟𝛼) =

1.95
2 . With 𝛼 = 1−

1.95
2 ,

given in the table, this yields 𝑟𝛼 = 1.96.

Question 7 A random variable is normally distributed, and has mean equal to 2 (unlike
previous questions), and standard deviation equal to 1. Compute the probability that a single
sample of this random variable will have a value in between 1.27 and 2.00. This is, compute
the probability 𝑃[1.27 < 𝑒 < 2.00].

Answer 7 The random variable now does not have a standard normal distribution. Though,
it can be turned into a standard normally distributed variable by subtracting the mean (this is a
linear operation and the new random variable is normally distributed as well), 𝑒 ∼ 𝑁(2, 1), and
(𝑒−2) ∼ 𝑁(0, 1), which is tabulated in Appendix C. We need 𝑃[𝑟𝛼,1 < 𝑒 < 𝑟𝛼,2] = 𝑃[(𝑟𝛼,1−2) <
(𝑒 − 2) < (𝑟𝛼,2 − 2)] = Φ(𝑟𝛼,2 − 2) − Φ(𝑟𝛼,1 − 2), with 𝑟𝛼,1 = 1.27 and 𝑟𝛼,2 = 2.00. With the
table, we obtain 𝑃[1.27 < 𝑒 < 2.00] = (1 − 0.5000) − (1 − (1 − 0.2327)) = 0.2673.

Question 8 Random variable 𝑒 is normally distributed, and has mean equal to 1, and
standard deviation equal to 2. Compute the probability that a single sample of this ran
dom variable will have a value in between 1.00 and 1.00. This is, compute the probability
𝑃[−1.00 < 𝑒 < 1.00].

Answer 8 The random variable now does not have a standard normal distribution. Though,
it can be turned into a standard normally distributed variable by subtracting the mean, and
dividing by the standard deviation (these are both linear operations and the new random
variable is normally distributed as well), 𝑒 ∼ 𝑁(1, 4), and 𝑒−1

2 ∼ 𝑁(0, 1), which is tabulated in
Appendix C. We need 𝑃[−𝑟𝛼,1 < 𝑒 < 𝑟𝛼,2] = 𝑃[

−𝑟𝛼,1−1
2 < 𝑒−1

2 < 𝑟𝛼,2−1
2 ] = Φ(𝑟𝛼,2−12 )−Φ(−𝑟𝛼,1−12 ),

with 𝑟𝛼,1 = 1.00 and 𝑟𝛼,2 = 1.00. With the table, we obtain 𝑃[−1.00 < 𝑒 < 1.00] =
(1 − 0.5000) − (1 − (1 − 0.1587)) = 0.3413.

Question 9 For the error 𝑒 in a distance observable 𝑦, with 𝑦 = 𝑥+𝑒, and 𝑥 the unknown
true distance, is given that it is distributed as 𝑒 ∼ 𝑁(0, 𝜎2), with standard deviation 𝜎 =
3 mm. What is the probability that — when we take a distance measurement in practice —
the magnitude of the measurement error is bigger than 6 mm?

Answer 9 The required probability is 𝑃[|𝑒| > 6]. The absolute sign (because of the word
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‘magnitude’) can be removed through: 𝑃[|𝑒| > 6] = 𝑃[𝑒 < −6] + 𝑃[𝑒 > 6], which equals
2𝑃[𝑒 > 6], as the normal distribution is symmetric here about zero (given zero mean). Then
we convert into a standard normal distribution through 2𝑃[ 𝑒𝜎 >

6
𝜎 ], which, with the table in

Appendix C (𝑟𝛼 = 2.00), yields 2𝑃[
𝑒
𝜎 >

6
3 ] = 2 ⋅ 0.0228 = 0.0456.

Question 10 A laser distometer is deployed on an accurately calibrated testrange (hence
the true distance 𝑥 is known). Suppose that the distance observable 𝑦 has a standard devi
ation of 2 mm, and that the instrument has a bias 𝜗 of 1 cm (hence all measured distances
are systematically too long by 1 cm). The distance observable is normally distributed. The
manufacturer analyses, by measuring the known distance repeatedly, the magnitude of the
error 𝑦 − 𝑥, where he presumes the error to be zero mean (as apriori he is not aware of the
presence of the bias). Can you give — based on the above given data — a good estimate for
the 95thpercentile that the manufacturer is going to find?

Answer 10 The deviation in the observable from the known distance 𝑦 − 𝑥 = 𝜗 + 𝑒 is
distributed as 𝜗 + 𝑒 ∼ 𝑁(𝜗, 𝜎2), in this case with 𝜗=10 mm, and 𝜎=2 mm. We need to find
the value for 𝑞𝑝 in 𝑃[−𝑞𝑝 < 𝜗 + 𝑒 < 𝑞𝑝] = 𝑝, which is an interval symmetric about zero,
with 𝑝=0.95. Transformation of the random variable yields 𝑃[−𝑞𝑝−𝜗𝜎 < 𝑒

𝜎 <
𝑞𝑝−𝜗
𝜎 ] = 𝑝, or

Φ(𝑞𝑝−𝜗𝜎 ) − Φ(−𝑞𝑝−𝜗𝜎 ) = 𝑝, as the random variable 𝑒
𝜎 has a standard normal distribution. This

has to be solved iteratively, by numerical search, i.e. trying different values for 𝑞𝑝 until we
obtain the desired 𝑝 = 0.95. Specifically, we start with value 𝑞𝑝 = 0, and increase it each step
by 0.01, until we reach the desired 95% probability, i.e. find the first occurrence where the
above equation yields a probability of 95% or more. The result is 𝑞𝑝=13.29. In this case the
left tail does actually not contribute to the exceedance probability, it is below 10−30; the 5%
of the samples beyond the bounds [−𝑞𝑝, 𝑞𝑝] will typically all lie at the right hand side, that is,
beyond 𝑞𝑝. Suppose the bias would be 𝜗=1 mm, then the bound is found to be 𝑞𝑝=4.37. In
the left tail we have an exceedance probability of 0.0036, and in the right tail 0.0460. Please
verify these figures yourself, with the table in Appendix C.

Question 11With a laser distometer four times the same distance has been measured on
a calibration testrange. The distance is known, with very high accuracy, and equals 2.894 m.
The four observed distances are: 𝑦1 = 2.890 m, 𝑦2 = 2.899 m, 𝑦3 = 2.875 m, and 𝑦4 =
2.886 m. Compute the (empirical) Mean Squared Error (MSE).

Answer 11 The empirical MSE follows from Eq. (6.18). In this case 𝑥 = 2.894 m, there
are four observations, hence 𝑁 = 4, and the four observations 𝑦1, 𝑦2, 𝑦3 and 𝑦4 are given.
Substituting this in Eq. (6.18) yields 116.5 mm2.



7
Multivariate: random vector

So far, we have been dealing with a single random variable. With two laser distometers in
place, there are two random variables in parallel, denoted by 𝑦

1
and 𝑦

2
respectively, as we

have two separate processes of taking measurements; a sample of 𝑦
1
is denoted by 𝑦1, and

a sample of 𝑦
2
by 𝑦2. In this chapter we treat the multivariate case.

From now on, the notion 𝑦 will refer to a random vector. By default, we assume that this
vector has 𝑚 elements, hence

𝑦 = ⎛⎜

⎝

𝑦
1
𝑦
2
⋮
𝑦
𝑚

⎞
⎟

⎠

(7.1)

and a sample of this vector is a set of one sample of each of the 𝑚 random variables in this
vector

𝑦 = ⎛

⎝

𝑦1
𝑦2
⋮
𝑦𝑚

⎞

⎠

In the second part of this chapter we address the question of what happens to random
variables upon mathematical manipulation. Suppose the two random variables 𝑦

1
and 𝑦

2
are

independent, and have variances 𝜎2𝑦1 and 𝜎2𝑦2 respectively, what will be the variance of the
sum of the two 𝑦

1
+ 𝑦

2
? Propagation laws are a crucial concept to be able to assess the

uncertainty in a result, which is computed from a set of measurements.

7.1. Probability density function and moments
The mean of 𝑦, the vector with random variables, is obviously a vector as well. Similar to (6.9)
we have

𝐸(𝑦) = ∫
+∞

−∞
𝑦𝑓(𝑦) 𝑑𝑦 (7.2)

67
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which now is a multiple integral expression; for instance for the element 𝑖 of this vector we
have

𝐸(𝑦
𝑖
) = ∫

+∞

𝑦1=−∞
∫
+∞

𝑦2=−∞
…∫

+∞

𝑦𝑖=−∞
…∫

+∞

𝑦𝑚=−∞
𝑦𝑖𝑓(𝑦1, 𝑦2, … , 𝑦𝑖 , … , 𝑦𝑚) 𝑑𝑦1𝑑𝑦2…𝑑𝑦𝑖 …𝑑𝑦𝑚

The mean, or expectation of vector 𝑦 is

𝐸(𝑦) = ⎛⎜

⎝

𝐸(𝑦
1
)

𝐸(𝑦
2
)

⋮
𝐸(𝑦

𝑚
)

⎞
⎟

⎠

(7.3)

Instead of a single variance 𝜎2, we now get a full 𝑚 × 𝑚 variance matrix 𝑄𝑦𝑦. Formally
the second central moment of the vector 𝑦 reads

𝐷(𝑦) = 𝐸((𝑦 − 𝐸(𝑦))(𝑦 − 𝐸(𝑦))𝑇) = ∫
+∞

−∞
(𝑦 − 𝐸(𝑦))(𝑦 − 𝐸(𝑦))𝑇𝑓(𝑦) 𝑑𝑦 (7.4)

which is a multiple integral expression (the superscript (⋅)𝑇 denotes the transpose of a vector
or matrix). In case vector 𝑦 consists of just a single random variable (𝑚=1), the above form
reduces again to (6.10). The variance matrix is

𝐷(𝑦) = 𝑄𝑦𝑦 = ⎛

⎝

𝜎2𝑦1 𝜎𝑦1𝑦2 ⋯ 𝜎𝑦1𝑦𝑚
𝜎𝑦2𝑦1 𝜎2𝑦2 ⋯ 𝜎𝑦2𝑦𝑚
⋮ ⋮ ⋱ ⋮

𝜎𝑦𝑚𝑦1 𝜎𝑦𝑚𝑦2 ⋯ 𝜎2𝑦𝑚

⎞

⎠

(7.5)

On the diagonal we find the variances for the individual random variables 𝑦
1
through 𝑦

𝑚
,

and on the offdiagonals, we find the covariances, each time pertaining to a pair of random
variables, hence 𝜎𝑦𝑖𝑦𝑗 is the covariance between 𝑦𝑖 and 𝑦𝑗, in textbooks on statistics often
denoted as 𝐶𝑜𝑣(𝑦

𝑖
, 𝑦
𝑗
). The covariance is

𝜎𝑦𝑖𝑦𝑗 = 𝐸((𝑦𝑖 − 𝐸(𝑦𝑖))(𝑦𝑗 − 𝐸(𝑦𝑗)))

and the correlation coefficient is defined as

𝜌𝑦𝑖𝑦𝑗 =
𝜎𝑦𝑖𝑦𝑗
𝜎𝑦𝑖𝜎𝑦𝑗

and can be regarded as a normalized covariance, as |𝜌𝑦𝑖𝑦𝑗| ≤ 1, [2]. When 𝜎𝑦𝑖𝑦𝑗 = 0, and
thereby 𝜌𝑦𝑖𝑦𝑗 = 0, the two random variables 𝑦

𝑖
and 𝑦

𝑗
are said to be uncorrelated.

One could regard the variance 𝜎2𝑦𝑖 as the covariance of 𝑦𝑖 with itself (𝜎𝑦𝑖𝑦𝑖 = 𝜎2𝑦𝑖); the
square denotes the variance, in order to distinguish it from the standard deviation 𝜎𝑦𝑖 .

As 𝜎𝑦𝑖𝑦𝑗 = 𝜎𝑦𝑗𝑦𝑖 , matrix 𝑄𝑦𝑦 (7.5) is symmetric. The variance matrix 𝑄𝑦𝑦 is a positive (semi)
definite matrix, just like the variance (6.10) by definition is a nonnegative quantity, meaning
that for any vector 𝑢 ∈ ℝ𝑚, it holds that the quadratic form 𝑢𝑇𝑄𝑦𝑦𝑢 ≥ 0 in case it is positive
semidefinite, and 𝑢𝑇𝑄𝑦𝑦𝑢 > 0 in case it is positive definite.
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7.1.1. Multivariate normal distribution
In case all random variables in vector 𝑦 are normally distributed, their joint distribution is a
multidimensional, or multivariate normal distribution, and the PDF 𝑓(𝑦) = 𝑓(𝑦1, 𝑦2, … , 𝑦𝑚) is
given by

𝑓(𝑦) = 1
√|2𝜋𝑄𝑦𝑦|

𝑒−
1
2 (𝑦−𝑥)

𝑇𝑄−1𝑦𝑦(𝑦−𝑥) (7.6)

= 1
(2𝜋)

𝑚
2 √|𝑄𝑦𝑦|

𝑒−
1
2 (𝑦−𝑥)

𝑇𝑄−1𝑦𝑦(𝑦−𝑥)

where |𝑄| denotes the determinant of matrix 𝑄, and vector 𝑥 denotes the mean of 𝑦, hence
𝑥 = 𝐸(𝑦).

7.2. Mean and variance propagation laws
We often transform one random vector into another one. When this transformation is linear,
the mean and variance matrix of the new random vector can be fairly easily computed, once
the mean and variance matrix of the original random vector are available; this takes place
through the socalled propagation laws.

We consider the following linear transformation

𝑣 = 𝑅𝑦 + 𝑠 (7.7)

where vector 𝑣 has 𝑛 elements, and consequently matrix 𝑅 has 𝑛 rows and 𝑚 columns, and
vector 𝑠 is an 𝑛vector.

The mean of 𝑣 is easily obtained through

𝐸(𝑣) = 𝐸(𝑅𝑦 + 𝑠) = 𝑅𝐸(𝑦) + 𝑠 (7.8)

where 𝐸(𝑣) is an 𝑛vector. The 𝑛 × 𝑛 variance matrix of 𝑣 follows as

𝑄𝑣𝑣 = 𝑅𝑄𝑦𝑦𝑅𝑇 (7.9)

In practice, (7.9) is also referred to as the error propagation law.
Proofs of the above two propagation laws can be found in Appendix B.2.
Finally we state that when vector 𝑦 is normally distributed, then through a linear transfor

mation as (7.7), vector 𝑣 is also normally distributed. Hence, if 𝑦 ∼ 𝑁 then through (7.7) also
𝑣 ∼ 𝑁.

7.3. Example
The height 𝑥1 of a benchmark — monumented in the outer wall of a church tower — has
been previously surveyed. The surveyed height of this point 1 is available and denoted as
observable 𝑦

1
, with standard deviation 𝜎𝑦1 = 𝜎 (e.g. with 𝜎 = 3 mm); the surveyed height

will be a good estimate for the unknown height 𝑥1, but not be perfect.
Next, we level from point 1 to 2, and eventually from point 2 to 3, see Figure 7.1. The

measured height difference 𝑦1,2 equals the difference of the height of point 2 and the height of
point 1, hence 𝑦1,2 = 𝑥2 − 𝑥1, apart of course, from a measurement error; and 𝑦2,3 = 𝑥3 − 𝑥2.
In order to properly account for random errors in these measurements, they are regarded as
random variables: observables 𝑦

1,2
and 𝑦

2,3
, with standard deviations 𝜎𝑦1,2 = 𝜎𝑦2,3 = 𝜎 (and
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1 2 3

y
1,2

y
2,3

Figure 7.1: Levelling from point 1, via point 2 to point 3.

zero mean measurement error 𝑦
1,2
= 𝑥2 − 𝑥1 + 𝑒1,2 and 𝐸(𝑦1,2) = 𝑥2 − 𝑥1, as 𝐸(𝑒1,2) = 0 is

assumed zero).
The surveyed height 𝑦

1
, and the height difference observables 𝑦

1,2
and 𝑦

2,3
are uncorre

lated.
With the given surveyed height and the measured height differences we can determine

the heights of points 2 and 3. The question now is, what uncertainty can be expected in these
figures? So, what will be the variability in the determined height for point 3 for instance?
Therefore, we need to compute the variance (or standard deviation) of the height (parameter)
we determine for this point.

We handle this problem in a structured and systematic way. First the height of point 1 can
be estimated; the estimator is trivial

�̂�1 = 𝑦1
From the second paragraph of text above we can deduce that

�̂�2 = 𝑦1 + 𝑦1,2
and that

�̂�3 = 𝑦1 + 𝑦1,2 + 𝑦2,3
We see that there is only one straightforward way to get to know the heights of points 2 and
3. The above three equations can be cast in matrixvector form

(
�̂�1
�̂�2
�̂�3
) = (

1 0 0
1 1 0
1 1 1

)
⏝⎵⎵⎵⏟⎵⎵⎵⏝

𝑀

(
𝑦
1

𝑦
1,2
𝑦
2,3

)

and now resembles (7.7), with the 𝑅matrix as the above 3×3matrix𝑀 (which in this example
is a square and full rank matrix). We basically have �̂� = 𝑀𝑦. We are concerned here with a
linear transformation.

In order to determine the variances (or standard deviations) of the height estimators (we
want to compute 𝑄�̂��̂�), we would like to apply (7.9). Therefore, we still need the variance
matrix of the observables 𝑄𝑦𝑦. The third paragraph of text says that all 𝑦’s are uncorrelated,
and we know that they all have standard deviation equal to 𝜎. Hence variance matrix 𝑄𝑦𝑦
(7.5) is just an identity matrix, scaled by 𝜎2. Applying (7.9) yields

𝑄�̂��̂� = 𝑀𝑄𝑦𝑦𝑀𝑇 = 𝜎2 (
1 1 1
1 2 2
1 2 3

)

and the requested variances can be obtained from the diagonal, hence 𝜎2�̂�1 = 𝜎
2, 𝜎2�̂�2 = 2𝜎

2,
and 𝜎2�̂�3 = 3𝜎

2.
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What we see here is an accumulation of uncertainty, when you add together observables
each with associated uncertainties. The estimator for the height of point 2 has a variance
which is double the one for point 1, where we started. And for point 3, this is even a factor
of three. We return to this phenomenon with Figure 9.14 on the socalled open levelling line.
You can also see that the three heightestimators are correlated, the offdiagonal elements
are not equal to zero; this also makes sense as they share part of the information they are
based on; for instance, the surveyed height 𝑦

1
appears in all three equations (for �̂�1, �̂�2, and

�̂�3).

7.4. Nonlinear mean and variance propagation laws
In Section 7.2 we considered a linear relation in Eq. (7.7). In practice, we may also face a
nonlinear relation:

𝑣 = 𝐺(𝑦) (7.10)

where 𝐺 is a mapping from ℝ𝑚 to ℝ𝑛; vector 𝑣 has 𝑛 elements (random variables), and vector
𝑦 has 𝑚 elements (random variables).

Theory is available to propagate the probability density function of 𝑦, 𝑓(𝑦), into the one of
𝑣, 𝑓(𝑣). In this section we restrict to just the expectation and the variance matrix of random
vector 𝑣.

An approximation for the expectation of 𝑣 is given by

𝐸(𝑣𝑖) ≈ 𝐺𝑖(𝐸(𝑦)) +
1
2trace(

𝜕2𝐺𝑖
𝜕𝑦𝑦𝑇 |𝐸(𝑦)

𝑄𝑦𝑦) (7.11)

for 𝑖 = 1,… , 𝑛, and where tracemeans taking the sum of the diagonal elements, in this case of
the matrix product 𝜕2𝐺𝑖

𝜕𝑦𝑦𝑇 |𝐸(𝑦)
𝑄𝑦𝑦, which is an𝑚×𝑚 matrix. Matrix 𝜕

2𝐺𝑖(𝑦)
𝜕𝑦𝑦𝑇 is the socalled Hes

sian matrix (in this case with dimensions 𝑚×𝑚), and contains the second order partial deriva
tives of the nonlinear function 𝐺𝑖(𝑦). This equation shows that 𝐸(𝑣𝑖) ≠ 𝐺𝑖(𝐸(𝑦)); supplying
the mean or expectation of 𝑦 in the nonlinear function 𝐺, does not yield the mean/expectation
of 𝑣! With approximation (7.11), there is already an extra term, which depends on the variance
matrix of 𝑦. The proof of (7.11) can be found in Appendix B.3.

An approximation for the variance matrix of 𝑣 is given by

𝑄𝑣𝑣 ≈
𝜕𝐺
𝜕𝑦𝑇 |𝐸(𝑦)

𝑄𝑦𝑦
𝜕𝐺
𝜕𝑦𝑇 |

𝑇

𝐸(𝑦)
(7.12)

where 𝜕𝐺(𝑦)𝜕𝑦𝑇 is an 𝑛×𝑚matrix, containing, as rows, the gradient vectors of nonlinear functions

𝐺𝑖(𝑦), with 𝑖 = 1,… , 𝑛, all evaluated at 𝐸(𝑦). Defining the matrix 𝑀 = 𝜕𝐺
𝜕𝑦𝑇 |𝐸(𝑦)

, the above

variance propagation law becomes 𝑄𝑣𝑣 ≈ 𝑀𝑄𝑦𝑦𝑀𝑇, which is then very similar to (7.9), though
(7.12) is an approximation. The proof of (7.12) can be found in Appendix B.3.

In practice, the expectation of the observable vector 𝑦 may not be known, hence the
derivatives 𝜕𝐺(𝑦)

𝜕𝑦𝑇 and 𝜕2𝐺𝑖(𝑦)
𝜕𝑦𝑦𝑇 are evaluated at a sample value instead.
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7.5. Exercises and worked examples
This section presents three problems with worked answers on error propagation.

Question 1 As shown in Figure 7.2, the height difference between point 1 and point 2
has been leveled, and the height difference between points 2 and 3 has been leveled. Both
observables have a standard deviation of 32 mm. The two observables are uncorrelated. Based
on these two observed height differences, the height difference between point 1 and point 3
is determined. What is the standard deviation of this height difference?

Figure 7.2: Levelling from point 1, via point 2 to point 3.

Answer 1 The height difference between point 1 and point 3 follows as 𝑦1,3 = 𝑦1,2 + 𝑦2,3.
Or, in terms of a matrix and a vector (and random variables)

𝑦
1,3
= ( 1 1 )⏝⎵⎵⏟⎵⎵⏝

𝑅

(
𝑦
1,2
𝑦
2,3

)

With the variance matrix of 𝑦
1,2
and 𝑦

2,3
being

𝐷(
𝑦
1,2
𝑦
2,3

) = (
9
4 0
0 9

4
)

application of Eq. (7.9) yields

𝜎2𝑦1,3 = ( 1 1 ) (
9
4 0
0 9

4
)( 11 ) =

18
4

In the absence of correlation, effectively the two variances are added: 9
4 +

9
4 =

18
4 . Hence,

the requested standard deviation becomes 𝜎𝑦1,3 =
3
2√2 mm. By adding two equally precise

observables, the result has a standard deviation which is worse by a factor of √2, not by a
factor of 2.

Question 2 The position coordinates of two points, 1 and 2, are available from an earlier
survey. For simplicity we consider a onedimensional coordinate system, shown in Figure 7.3.
The coordinates of points 1 and 2 are 𝑥1 and 𝑥2 respectively, and their variance matrix is given
as

𝐷 ( 𝑥1𝑥2
) = ( 4 2

2 4 )

Figure 7.3: Computing distance 𝑙 from the coordinates 𝑥1 and 𝑥2.
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hence, the variance of a single coordinate is 𝜎2𝑥1 = 𝜎2𝑥2 = 4, and the covariance is 𝜎𝑥1𝑥2 = 2.
The correlation between 𝑥1 and 𝑥2 naturally results, as both coordinates together stem from
the same, earlier survey. Compute the variance of distance 𝑙 between the two points.

Answer 2 Distance 𝑙 is defined as the difference between the two coordinates 𝑙 = 𝑥2−𝑥1
(assuming that 𝑥2 > 𝑥1), and this can be cast in the shape of (7.7) as

𝑙 = ( −1 1 )⏝⎵⎵⏟⎵⎵⏝
𝑅

( 𝑥1𝑥2
)

and hence, the variance of the distance 𝜎2𝑙 follows with (7.9) as

𝜎2𝑙 = ( −1 1 )⏝⎵⎵⏟⎵⎵⏝
𝑅

( 4 2
2 4 )⏝⎵⎵⏟⎵⎵⏝
𝑄𝑥𝑥

( −11 )
⏝⎵⏟⎵⏝

𝑅𝑇

= 4

When the covariance between 𝑥1 and 𝑥2 would be zero, then 𝜎
2
𝑙 = 8, and the variance of the

distance equals the sum of the two variances 𝜎2𝑥1 and 𝜎2𝑥2 (naturally as the uncertainty in the
coordinates of both points contributes to the uncertainty in the distance). In practice, when
there is positive correlation between 𝑥1 and 𝑥2 (practically meaning that chances are high that
they share similar errors, which will then to some extent cancel in the difference), as in this
exercise, the variance of the distance is actually smaller (than the sum). In this exercise we
computed the precision of the distance, or actually the coordinate difference of two points,
which is typically referred to as relative precision.

Question 3 Given is a random variable 𝑦 with mean equal to 𝐸(𝑦) = 40 mm, and a
standard deviation of 𝜎𝑦 = 3 mm. Compute the expectation and standard deviation of 𝑣, with
𝑣 = 𝑦2.

Answer 3 The given transformation 𝑣 = 𝑦2 is nonlinear, hence the propagation laws
for a linear transformation can not be applied. We have to use (7.11) and (7.12) instead.
With 𝐺(𝑦) = 𝑦2, we obtain 𝜕𝐺(𝑦)

𝜕𝑦 = 2𝑦 and 𝜕2𝐺(𝑦)
𝜕𝑦2 = 2 (which have to be evaluated at

𝐸(𝑦) = 40 mm), and this results into

𝐸(𝑣) ≈ 402 + 122 ⋅ 9 = 1609mm2

𝜎2𝑣 ≈ 80 ⋅ 9 ⋅ 80 = 57600mm4

hence 𝜎𝑣 ≈ 240 mm2. Mind that the expectation 𝐸(𝑣) deviates, though slightly, from
(𝐸(𝑦))2 = 1600 mm2. The larger the uncertainty in observation 𝑦, the larger its variance,
and hence the larger the effect of the second term of (7.11).





8
Observation modeling and

parameter estimation

8.1. Introduction
In this chapter we propose a structured way of dealing with measurements. For each mea
surement we will formulate an equation, which expresses the observed quantity in terms of
parameters of interest. In Chapter 6, we used a very simple example: we had a distance ob
servable 𝑦, and related it to the unknown (true) distance 𝑥. The observation equation reads:

𝑦 = 𝑥 + 𝑒 (8.1)

This equation says that distance observable 𝑦 is equal to the unknown, true distance, plus a
random error term 𝑒 representing the measurement error. When the instrument is fine, and
the measurement is carried out properly, we can expect that the measurement (sample) 𝑦
is not perfect, hence we will not have 𝑦 = 𝑥, though 𝑦 should be close to 𝑥. The symbol 𝑒
accounts for the measurement error, which, due to uncontrollable effects, will be positive one
time, negative a next time, small, somewhat bigger etc. But, on average, the measurement
is expected to be spoton, that is, on average the measurement error is zero, 𝐸(𝑒) = 0,
and therefore 𝐸(𝑦) = 𝑥. The spread we can expect once we would take many repeated
measurements, and the uncertainty present in a single measurement, is quantified by standard
deviation 𝜎. With a laser distometer for instance, a value of 𝜎=0.002 m is a fair number. Then
we have 𝜎𝑦 = 𝜎𝑒 = 𝜎.

In this simple example, the unknown parameter of interest is the distance. In practice
survey problems can be much more complicated. Measurements can be angles and distances,
and the unknown parameters are (position) coordinates of certain points of interest. An
observation equation is an equation, expressing the observed quantity in terms of the unknown
parameters. When you express a distance in terms of position coordinates (in a two or three
dimensional space), this equation may even be nonlinear. Later we return to nonlinear
observation equations, but first we address the linear model of observation equations.

8.2. Observation modeling
The model of observation equations is given by

𝐸(𝑦) = 𝐴𝑥 ; 𝐷(𝑦) = 𝑄𝑦𝑦 (8.2)

75
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where 𝑦 is the 𝑚vector of observations, 𝑥 the 𝑛vector of unknown parameters, 𝐴 the 𝑚×𝑛
design matrix (of full rank equal 𝑛) containing a total of 𝑚𝑛 known coefficients, and 𝑄𝑦𝑦 the
𝑚 ×𝑚 variancematrix (rank equal 𝑚). The observation equations are assumed to be linear
here, so (8.2) is a linear system. The system can also be written with the measurement errors
occuring explicitly

𝑦 = 𝐴𝑥 + 𝑒 ; 𝐷(𝑦) = 𝐷(𝑒) = 𝑄𝑦𝑦 (8.3)

with 𝐸(𝑒) = 0.
The linear regression model in Chapter 17 of [2], with offset 𝛼 and slope 𝛽 is indeed a

simple example of the above linear model of observation equations; these two parameters 𝛼
and 𝛽 would together constitute vector 𝑥.

8.2.1. Example
In the example on leveling in the previous chapter (Figure 7.1), the unknown parameters of
interest are the heights of certain points (as 𝑥2 and 𝑥3), and through leveling we measure
height differences: e.g. 𝑦2,3 = 𝑥3 − 𝑥2. The model of observation equations reads

𝐸 (
𝑦
1

𝑦
1,2
𝑦
2,3

)

⏝⎵⎵⏟⎵⎵⏝
𝐸(𝑦)

= (
1 0 0
−1 1 0
0 −1 1

)
⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝

𝐴

(
𝑥1
𝑥2
𝑥3
)

⏝⎵⏟⎵⏝
𝑥

In this special case, 𝑚 = 𝑛 = 3 (there are exactly as many unknown parameters, as there
are observations), and matrix 𝐴 is a square and invertible matrix, and indeed we had �̂� = 𝑀𝑦
which, with 𝑀 = 𝐴−1, equals �̂� = 𝐴−1𝑦. The above system of equations is solved for by simply
an inversion of matrix 𝐴, but this can be done only in the case with a square and invertible
matrix 𝐴.

8.2.2. Redundancy
When there are 𝑛 unknown parameters (in vector 𝑥) to determine, we need at least 𝑚 = 𝑛
observations (in vector 𝑦). In practice, typically (some) more measurements are done than
strictly necessary (for good reasons), and in this part we will always consider the case 𝑚 ≥ 𝑛.
The excess of 𝑚 over 𝑛 is referred to as redundancy; it equals 𝑚 − 𝑛.

8.3. Parameter estimation
Given a vector of observations 𝑦 we have to determine the values for the entries in vector
𝑥. In the simple example above (in Section 8.1), computing the estimator for the unknown
distance is very simple: �̂� = 𝑦, once we have a sample for 𝑦, we simply equate the result for
𝑥 to this observation: �̂� = 𝑦. By the hatsymbol, we denote that this is an estimate for the
unknown distance. We will never know the actual true distance, but we can make a guess, or
estimate of it, based on our observation. The true distance 𝑥 is still unknown, but, the ‘best
to our knowledge’ guess of it is �̂� = 𝑦.

When, with multiple measurements and unknown parameters, we have 𝑚 = 𝑛, then
�̂� = 𝐴−1𝑦, as 𝐴 was assumed a full rank matrix before (and with 𝑚 = 𝑛 it is also a square
matrix). This is still a fairly simple case to solve.

As said before, in practice we typically deal with the case 𝑚 > 𝑛, hence there are ’too
many’ measurements, and for the reason of measurement errors, vector 𝑒 in (8.3), the system
𝑦 = 𝐴𝑥 will not be a consistent system, i.e. 𝑦 ≠ 𝐴𝑥; given the measurements, there will not
be a solution for 𝑥 which exactly satisfies all equations in the system 𝑦 = 𝐴𝑥.
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8.3.1. Example
Suppose we measure the same distance twice. One time, we get 𝑦1=7.452 m, and next we
get 𝑦2=7.454 m. Though, these two measurements are close together, we cannot make them
fit perfectly in the assumed measurement model. For both observables holds that they are
related to the same, unknown distance, hence

( 𝑦1𝑦2
) = ( 11 ) 𝑥

but we can never find a value for 𝑥 which satisfies 𝑦1=7.452 m = 𝑥, and at the same time
𝑦2=7.454 m = 𝑥. Therefore 𝑦 ≠ 𝐴𝑥. Adding measurement errors 𝑒1 and 𝑒2 on the right hand
side would complete the above expression, where typically 𝑒1 ≠ 𝑒2.

8.3.2. Leastsquares estimate
The leastsquares principle provides a solution to a system of observation equations which is
redundant (𝑚 > 𝑛) and inconsistent (𝑦 ≠ 𝐴𝑥 due to measurement errors). The estimate for
the unknown parameter vector 𝑥 shall be computed according to

�̂� = (𝐴𝑇𝐴)−1𝐴𝑇𝑦 (8.4)

The name leastsquares explains, as we are trying to make the system 𝑦 = 𝐴𝑥 consistent, by
using — instead of the vector of observations 𝑦 — a vector of estimated, ‘slightly adapted’,
observation values �̂�, that is �̂� = 𝐴�̂� (properly said, �̂� is the estimate for the mean of the
observable 𝑦). Of course, one could choose very weird values for �̂� and consequently for �̂�,
and arrive at a consistent system, but, we would like to have �̂� close to 𝑦, as afterall, we
expect the measured values to be close to the true values (the measurements do contain
useful information). So, we are going to ‘change’, or ‘adjust’ the observed values not too
much.

The underlying criterion is, given vector 𝑦, to find 𝑥 such that the length (norm) of the
vector (𝑦 − 𝐴𝑥) is smallest

min
𝑥
‖𝑦 − 𝐴𝑥‖2 (8.5)

The solution �̂� to this minimization problem yields the smallest length, hence the vector (𝑦 −
𝐴�̂�) = (𝑦 − �̂�) is shortest (the norm is obtained by squaring all entries of the vector and
summing them, and this should be at minimum, hence the term leastsquares). A proof that
solution (8.4) results from this minimization is provided in Appendix B.4.

8.3.3. Example
When we observe the same distance 𝑥 twice, then the leastsquares estimator for the unknown
distance equals just the average of the two measurements:

( 𝑦1𝑦2
) = ( 11 )⏝⎵⏟⎵⏝

𝐴

𝑥

and using (8.4) we find that �̂� = 1
2(𝑦1 + 𝑦2).

In Section 6.5.2 we actually used a model 𝑦 = 𝐴𝑥 with 𝑦 = (𝑦1, … , 𝑦𝑁)𝑇 and 𝐴 = (1,… , 1)𝑇
with 𝑚 = 𝑁 and 𝑛 = 1, just a single unknown parameter.
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8.3.4. Minimum variance estimator
With leastsquares we have not used yet all available information. We used just the functional
relations between observations and unknown parameters cast in 𝑦 = 𝐴𝑥. In (8.2) we have also
available, the variance matrix of the observables 𝑄𝑦𝑦 (and it does not occur at all in (8.4)). The
parameter estimation process should use this information, to be optimal. Observables with
small variances should get more weight in the solution than observables with larger variances.
The first ones are more precise than the latter, and the resulting estimator should reflect this.
The information contained in the variance matrix 𝑄𝑦𝑦 is taken into account in an optimal way,
by the following estimator, which we state without proof:

�̂� = (𝐴𝑇𝑄−1𝑦𝑦𝐴)−1𝐴𝑇𝑄−1𝑦𝑦𝑦 (8.6)

You can easily see that, when the variance matrix 𝑄𝑦𝑦 is a (scaled) identity matrix, we are
back at (8.4). Note that the above estimator �̂� for the vector of unknown parameters is a
random vector, as it is a function of the vector of observables 𝑦. The leastsquares principle
is not concerned with statistical aspects, and therefore no ‘underscores’ are used in Eq. (8.4).

The above estimator (8.6) has three distinct properties. The first one is that �̂� is a linear
function of the observables 𝑦, through 𝑛×𝑚matrix (𝐴𝑇𝑄−1𝑦𝑦𝐴)−1𝐴𝑇𝑄−1𝑦𝑦 . Second, the estimator
is unbiased, that is, on average it delivers values which agree with the unknown true values;
taking the expectation of (8.6) and using (7.8) we get 𝐸(�̂�) = (𝐴𝑇𝑄−1𝑦𝑦𝐴)−1𝐴𝑇𝑄−1𝑦𝑦𝐸(𝑦), which,
with 𝐸(𝑦) = 𝐴𝑥, yields 𝐸(�̂�) = (𝐴𝑇𝑄−1𝑦𝑦𝐴)−1𝐴𝑇𝑄−1𝑦𝑦𝐴𝑥 = 𝑥, thus indeed 𝐸(�̂�) = 𝑥. And finally
the estimators in �̂� have minimum variance. The vector �̂� is a (linear) function of vector 𝑦,
which is a vector with random variables, hence all entries are subject to (random) measure
ment errors. Therefore, the entries of vector �̂� will also be subject to uncertainty. By using
variance propagation law (7.9) on

�̂� = (𝐴𝑇𝑄−1𝑦𝑦𝐴)−1𝐴𝑇𝑄−1𝑦𝑦⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝
𝐻

𝑦

we obtain the 𝑛 × 𝑛 variance matrix for the estimator �̂� as

𝑄�̂��̂� = 𝐻𝑄𝑦𝑦𝐻𝑇 = (𝐴𝑇𝑄−1𝑦𝑦𝐴)−1𝐴𝑇𝑄−1𝑦𝑦 𝑄𝑦𝑦 𝑄−1𝑦𝑦𝐴(𝐴𝑇𝑄−1𝑦𝑦𝐴)−1

which simplifies into

𝑄�̂��̂� = (𝐴𝑇𝑄−1𝑦𝑦𝐴)−1 (8.7)

It can be shown that this matrix — among the variance matrices of all possible linear and
unbiased estimators — has minimum trace, that is, this estimator is best in the sense that
the sum of all 𝑛 variances together is smallest. The leastsquares solution (8.4) only shares
the first two properties with the minimum variance solution (8.6), hence being linear and
unbiased.

The estimator (8.6) is unbiased, and therefore minimum variance implies best accuracy, cf.
Section 6.6. The estimator (8.6) is also known as the Best Linear Unbiased Estimator (BLUE).
It provides a generalization of the leastsquares estimation of offset 𝛼 and slope 𝛽 in Chapter
22 of [2]. An example on regression, or linefitting is presented in Chapter 10. With the
above BLUE one can compute a properly weighted leastsquares solution (for vector 𝑥) to any
proper linear problem. As the inverse of matrix 𝑄𝑦𝑦 is involved in (8.6), precise observables
(small variances) receive larger weights, and less precise observables (large variances) receive
smaller weights.
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8.3.5. Example
We repeat the example of observing the same distance twice. However in this case the first
measurement is made with a better instrument, and the standard deviation of 𝑦

1
is equal to

1
2 . The second measurement is carried out with the default instrument, as before, and the
standard deviation of 𝑦

2
equals 1. We have

𝐸 (
𝑦
1
𝑦
2
) = ( 11 )⏝⎵⏟⎵⏝

𝐴

𝑥 ; 𝐷 (
𝑦
1
𝑦
2
) = 𝑄𝑦𝑦 = (

1
4 0
0 1 )

and using (8.6) we find that �̂� = 4
5𝑦1 +

1
5𝑦2, hence we arrive at the weighted mean, rather

than the ordinary mean. Observable 𝑦
1
has a variance which is four times smaller than the

variance of observable 𝑦
2
, and therefore the coefficient in the final estimator is four times

bigger, 45 versus
1
5 , and because

4
5 +

1
5 = 1 all information is taken into account (total weight

equals 1, and the estimator is unbiased).
Finally, with (8.7), one can see that the variance of the estimator is 𝜎2�̂� =

1
5 , which is better,

and smaller than that of any of the two observables at the input!
Collecting redundant measurements (here we have 𝑚 = 2 and 𝑛 = 1) typically leads to

inconsistent systems of equations, but eventually improves the precision of the estimator!

8.4. Nonlinear observation equations
The chapter started with a linearmodel of observation equations (8.2), and proposed the least
squares estimate and the Best Linear Unbiased Estimator (BLUE). It provides a nice theoretical
framework. But, in practice there are hardly any measurements which carry a linear relation
with the unknown parameters. Indeed, a leveled height difference is linear in the (unknown)
heightparameters of the two points. But a distance is clearly a nonlinear function of the
coordinate differences, see (9.4).

The approach to systems of nonlinear observation equations will be to approximate them
by linear equations. The originally nonlinear equations will be linearized with respect to the
unknown parameters and the resulting system of linear(ized) equations will be treated using
(8.4) or (8.6) on (8.2). Of course, we need to make sure that the approximation we make, is
sufficiently good.

The model of observation equations

𝐸(𝑦) = 𝐹(𝑥) ; 𝐷(𝑦) = 𝑄𝑦𝑦 (8.8)

where matrixvector product 𝐴𝑥 has been replaced by 𝐹(𝑥), a nonlinear function, or mapping
from ℝ𝑛 to ℝ𝑚; it is a collection of 𝑚 nonlinear functions of 𝑛 parameters.

The mapping 𝐹(𝑥) can be detailed as

𝐸⎛⎜

⎝

𝑦
1
𝑦
2
⋮
𝑦
𝑚

⎞
⎟

⎠

= ⎛

⎝

𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛)
𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛)

⋮
𝑓𝑚(𝑥1, 𝑥2, … , 𝑥𝑛)

⎞

⎠

or in words, (the expectation of) each observable 𝑦
𝑖
is a (scalar) function 𝑓𝑖 of 𝑛 parameters,

namely 𝑥1, 𝑥2, … , 𝑥𝑛 (𝑓𝑖 is a mapping from ℝ𝑛 to ℝ), and rowbyrow we do have 𝑚 such
functions, 𝑖 = 1,… ,𝑚. Examples of function 𝑓𝑖 are given by (9.2) and (9.4).
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Figure 8.1: Linearization of the nonlinear function 𝑦 = 𝑓(𝑥) + 𝑒 (𝑚 = 𝑛 = 1). The red line represents the first
degree Taylor polynomial of 𝑓(𝑥), shown by the blue curve, centered at 𝑥𝑜.

8.4.1. Linearization
The function 𝐹(𝑥) is approximated by the zero order and first order terms. Higher order
terms are neglected. We rely on the Taylor series, using a point 𝑥𝑜, which is presumed to be
reasonably close to the actual/true 𝑥; vector 𝑥𝑜 = (𝑥1,𝑜, 𝑥2,𝑜, … , 𝑥𝑛,𝑜)𝑇 contains approximate
values for all 𝑛 unknown parameters. So,

𝐹(𝑥) ≈ 𝐹(𝑥𝑜) +
𝜕𝐹(𝑥)
𝜕𝑥𝑇 |

𝑥𝑜
(𝑥 − 𝑥𝑜)

where the zero order term and the first derivative are evaluated at 𝑥𝑜. To compute the first
order derivative, all 𝑚 nonlinear functions, one by one, are differentiated with respect to 𝑥1,
𝑥2, until 𝑥𝑛 (and these derivatives are organized in a row), hence this turns into an 𝑚 × 𝑛
matrix. The first row of this matrix reads 𝜕𝑓1

𝜕𝑥1
𝜕𝑓1
𝜕𝑥2

⋯ 𝜕𝑓1
𝜕𝑥𝑛

, with the partial derivatives evaluated
at 𝑥𝑜. The simple case of 𝑚 = 𝑛 = 1 is shown in Figure 8.1  the slope of the red line is driven
by 𝜕𝑓(𝑥)

𝜕𝑥 |
𝑥𝑜
.

Substituting the firstdegree (linear) approximation of 𝐹(𝑥) into (8.8) yields

𝐸(𝑦) ≈ 𝐹(𝑥𝑜) +
𝜕𝐹(𝑥)
𝜕𝑥𝑇 |

𝑥𝑜
(𝑥 − 𝑥𝑜) ; 𝐷(𝑦) = 𝑄𝑦𝑦

or

𝐸(𝑦 − 𝐹(𝑥𝑜)⏝⎵⎵⏟⎵⎵⏝
Δ𝑦

) ≈ 𝜕𝐹(𝑥)
𝜕𝑥𝑇 |

𝑥𝑜⏝⎵⎵⏟⎵⎵⏝
𝐴

(𝑥 − 𝑥𝑜)⏝⎵⏟⎵⏝
Δ𝑥

; 𝐷(𝑦 − 𝐹(𝑥𝑜)) = 𝑄𝑦𝑦 (8.9)

Here, the first order derivative (of dimensions 𝑚 × 𝑛) takes the role of the design matrix 𝐴.
The vector of observations 𝑦 is replaced by 𝑦 − 𝐹(𝑥𝑜), that is, the observations minus the
observations as they are computed based on just the approximate value 𝑥𝑜 for the unknown
parameters: 𝑦𝑜 = 𝐹(𝑥𝑜). And through leastsquares we will not be estimating the vector
of unknown parameters 𝑥, but (𝑥 − 𝑥𝑜) instead, the differences of 𝑥 with respect to the
approximate values 𝑥𝑜 that we already introduced.

8.4.2. Estimation
Accepting the approximation made in (8.9), the estimator for Δ𝑥 follows as

Δ�̂� = (𝐴𝑇𝑄−1𝑦𝑦𝐴)−1𝐴𝑇𝑄−1𝑦𝑦(𝑦 − 𝐹(𝑥𝑜))
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Figure 8.2: Example of nonlinear estimation problem, fitting a cosine with unknown amplitude and frequency
through a given set of data points, indicated by red asterisks (at left), and results of GaussNewton iterated
estimation (at right).

with

𝑄Δ�̂�Δ�̂� = (𝐴𝑇𝑄−1𝑦𝑦𝐴)−1

and the eventual estimator for the vector of unknown parameter is obtained as

�̂� = 𝑥𝑜 + Δ�̂�

with

𝑄�̂��̂� = 𝑄Δ�̂�Δ�̂�

The model (8.9) is only an approximation of the actual nonlinear model. For the approx
imation to be good and valid, the approximate value 𝑥𝑜 should be close to the true unknown
value 𝑥. Therefore, the above procedure is repeated (iterated). One starts off with as good
as possible guess for 𝑥𝑜, next one determines the estimate �̂�, and then takes this estimate
as a new approximate value, as likely it is closer to the true, unknown 𝑥 than 𝑥𝑜 was, and
repeats the above procedure (and on and on, if necessary). This iterative procedure is known
as the GaussNewton method. A further discussion of this method, its properties and conver
gence behaviour is beyond the scope of this book (as well as alternatives to the GaussNewton
method).

Concerns with regard to non linear estimation are briefly mentioned in Appendix B.5.

8.4.3. Example
A certain object moves harmonically, for instance a tall rise structure vibrating under the load
of wind. The motion in one dimension, as a function of time, can be described by a cosine,
with zero phase offset (our assumption/simplification in this example), but with unknown
amplitude and frequency. The positions of the object are observed at times 𝑡1 = 10, 𝑡2 = 20,
𝑡3 = 30, 𝑡4 = 40, 𝑡5 = 50, and 𝑡6 = 60 seconds (timing is assumed to be perfect), and the
measurements are denoted by 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5 and 𝑦6 (and these position measurements are
subject to errors). The observation model reads

𝐸(𝑦
𝑖
) = 𝑥1 cos(2𝜋𝑥2𝑡𝑖) (8.10)

for 𝑖 = 1,… , 6. Unknown parameters are the amplitude 𝑥1, and the frequency 𝑥2 in Hertz.
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iteration 0 1 2 3 4 5

𝑦1 = 2.3 2.9698 1.7446 2.2474 2.3027 2.3046 2.3046
𝑦2 =1.8 0.0000 1.1066 1.8431 1.7699 1.7729 1.7729
𝑦3 =4.2 𝐹(𝑥𝑜) 2.9698 2.9975 4.2056 4.2163 4.2210 4.2210
𝑦4 =2.8 4.2000 2.2871 2.6249 2.7887 2.7898 2.7898
𝑦5 = 1.2 2.9698 0.4080 1.4168 1.2011 1.2054 1.2054
𝑦6 = 4.1 0.0000 2.7491 4.1302 4.0874 4.0928 4.0928

0.6698 0.5554 0.0526 0.0027 0.0046 0.0046
1.8000 0.6934 0.0431 0.0301 0.0271 0.0271

𝑦 − 𝐹(𝑥𝑜) 1.2302 1.2025 0.0056 0.0163 0.0210 0.0210
1.4000 0.5129 0.1751 0.0113 0.0102 0.0102
4.1698 0.7920 0.2168 0.0011 0.0054 0.0054
4.1000 1.3509 0.0302 0.0126 0.0072 0.0072

(𝑥1)𝑜 =4.2000 �̂�1 3.0818 4.2308 4.2595 4.2641 4.2641 4.2641
(𝑥2)𝑜 =0.0125 �̂�2 0.0154 0.0161 0.0159 0.0159 0.0159 0.0159

Table 8.1: GaussNewton iteration: the left column shows the observed values 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5 and 𝑦6, and the
two approximate values for the unknown parameters at bottom (𝑥1)𝑜 and (𝑥2)𝑜. The columns 0 through 5 show
the results of the 5 iteration steps; on top the 𝐹(𝑥𝑜), 𝑦 − 𝐹(𝑥𝑜) and the resulting estimate �̂� at bottom.

The observation values are 𝑦1 = 2.3, 𝑦2 = −1.8, 𝑦3 = −4.2, 𝑦4 = −2.8, 𝑦5 = 1.2 and
𝑦6 = 4.1, and they are shown in Figure 8.2 by the red asterisks. The observation model
is nonlinear in the unknown paramaters 𝑥1 and 𝑥2, and will now be approximated by zero
and first order terms. In order to do so, one needs approximate values for the unknown
parameters. Our choice is to simply set the amplitude (𝑥1)𝑜 equal to the largest observed
value (in absolute sense) (𝑥1)𝑜 = |𝑦4|, and the data points in Figure 8.2 seems to show
roughly one period of the harmonic motion in a time span of 80 seconds, hence the frequency
is set to (𝑥2)𝑜 =

1
80 (Hz). The dashed line presents the harmonic wave defined by these

approximate values, hence 𝑦𝑜(𝑡) = (𝑥1)𝑜 cos(2𝜋(𝑥2)𝑜𝑡).
The graph on the right in Figure 8.2 shows again the harmonic wave defined by the initial

approximate values, and also the results (estimates) of the first and second iteration (in thin
dotted lines), and eventually the result of the last step, the fifth iteration, as a solid line: �̂�(𝑡) =
�̂�1 cos(2𝜋�̂�2𝑡). One can clearly see that with the initial approximate values the harmonic wave
was a bit off, and that a few iterations quickly make the wave fit to the observated data points.
Numerical results are reported in Table 8.1. The values 𝐹(𝑥𝑜) computed for the observations
in each iteration, directly follow from using the values for �̂� = (�̂�1, �̂�2)𝑇 obtained in the step
before.

It should be noted that the approximate values for the unknown amplitude and frequency
should be carefully chosen — not any value will do. The problem is in fact highly nonlinear —
the cosinus is a highly curved function, in particular for high(er) frequencies. The approximate
values should be sufficiently close already to the true, but unknown values for the parameters
to be estimated.

8.5. Exercises and worked examples
In this section we present a sequence of questions on parameter estimation, all related to the
same problem.

Question 1 A onedimensional positioning problem is considered, see Figure 8.3. Two
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Figure 8.3: Onedimensional positioning problem: observing distances 𝑦1 and 𝑦2, and determining the position
coordinates of points 1 and 2 (Question 1).

distances have been observed, 𝑦1 and 𝑦2 (each time from the origin of the coordinatesystem,
point 0 with 𝑥0 = 0), and the purpose is to determine the position coordinates of the points 1
and 2, hence 𝑥1 and 𝑥2. The observations are given as 𝑦1=21 and 𝑦2=63.

Answer 1 This is actually a trivial problem. There are 𝑚 = 2 observations and 𝑛 = 2
unknown parameters. There is a unique solution, and that is all there is.

�̂�1 = 𝑦1
�̂�2 = 𝑦2

Setting up the model of observation equations and though formally computing the least
squares parameter estimates yields an identical result. Applying (8.4) to

𝐸 (
𝑦
1
𝑦
2
) = ( 1 0

0 1 )(
𝑥1
𝑥2
)

also yields �̂�1 = 𝑦1 and �̂�2 = 𝑦2, hence �̂�1=21 and �̂�2 = 63.

Figure 8.4: One dimensional positioning problem: observing distances 𝑦1, 𝑦2, and 𝑦3, and determining the position
coordinates of points 1 and 2 (Question 2).

Question 2 Now, also the distance between point 1 and 2 has been observed, 𝑦3=45, see
Figure 8.4. The task is to compute leastsquares estimates for the unknown coordinates 𝑥1
and 𝑥2.

Answer 2 There are 𝑚 = 3 observations and 𝑛 = 2 unknown parameters, and they are
cast in a model of observation equations.

𝐸 (
𝑦
1
𝑦
2
𝑦
3

) = (
1 0
0 1
−1 1

)( 𝑥1𝑥2
)

Applying (8.4) yields, with

𝐴𝑇𝐴 = ( 2 −1
−1 2 )

( �̂�1�̂�2
) = 1

3 (
2 1
1 2 )(

1 0 −1
0 1 1 )(

𝑦1
𝑦2
𝑦3
) = 1

3 (
2 1 −1
1 2 1 )(

𝑦1
𝑦2
𝑦3
)
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and supplying the numerical values, we obtain �̂�1=20 and �̂�2=64. These values are slightly
different from the ones obtained with Answer 1. This requires further deliberations. With
Question 1 we basically had two unknown parameters in two equations. The solution was
trivial. With Question 2 there is actually one observation ‘too much’; the redundancy equals
𝑚 − 𝑛=1. The observations are not consistent with the assumed model. One expects that
𝐸(𝑦

2
) − 𝐸(𝑦

1
) = 𝐸(𝑦

3
), or that 𝐸(𝑦

2
) − 𝐸(𝑦

1
) − 𝐸(𝑦

3
) = 0, but using the given observation

values, we end up with 𝑦2−𝑦1−𝑦3 = −3. It does not fit exactly. With leastsquares parameter
estimation we try — given the mathematical model — to find the solution best fitting all ob
servations. The ‘best’ fitting implies that a misfit or discrepancy is distributed (in this exercise)
equally over all observations. Using the leastsquares parameter estimates �̂�1 and �̂�2, one
could compute for diagnostic reasons, using the model 𝑦 = 𝐴𝑥, estimates for the observables

(
�̂�1
�̂�2
�̂�3
) = (

1 0
0 1
−1 1

)( �̂�1�̂�2
)

and we obtain �̂�1=20, �̂�2=64, and �̂�3=44, and the misfit has been resolved: �̂�2 − �̂�1 − �̂�3 = 0.
One can also observe that all three observation values have been ‘adjusted’ by the same
amount 𝑦1− �̂�1 = 1, 𝑦2− �̂�2 = −1, and 𝑦3− �̂�3 = 1. This is illustrated in Figure 8.5. We return
to the difference 𝑦 − �̂� as the leastsquares residuals in Section 10.1.

Figure 8.5: One dimensional positioning problem: observing distances 𝑦1, 𝑦2, and 𝑦3, and determining the position
coordinates of points 1 and 2, interpreting the results of leastsquares parameter estimation.

Question 3 When the observables’ variance matrix is given, one can apply the minimum
variance estimator (8.6) of Section 8.3.4. In this problem all observables are equally precise
with 𝜎𝑦𝑖 = 1, with 𝑖 = 1, 2 for Question 1, and with 𝑖 = 1, 2, 3 for Question 2. The observ
ables are uncorrelated. Compute the variance matrix of the minimum variance estimator for
Question 1, and also for Question 2.

Answer 3 The variance matrix of the minimum variance estimator is given by (8.7). For
Question 1 𝑄𝑦𝑦 is a 2 × 2 identity matrix and we obtain

𝑄�̂��̂� = (
1 0
0 1 )

For Question 2 𝑄𝑦𝑦 is a 3 × 3 identity matrix, and we obtain

𝑄�̂��̂� =
1
3 (

2 1
1 2 )

For Question 1 the variance of the estimators for the coordinates is 𝜎2�̂�1 = 𝜎2�̂�2 = 1, and for
Question 2 𝜎2�̂�1 = 𝜎2�̂�2 =

2
3 , hence the precision of the coordinates in Question 2 is better

than in Question 1. This is what redundancy brings on account of precision: using an extra
observation pays off by obtaining more precise results!
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Land surveying

Land surveying is in support of civil engineering activities, as there is need for knowledge
about shape, attitude and location (position) of objects, topography and the Earth’s surface.
Measurements are done to gather this knowledge, and the knowledge is eventually presented
— most often — in terms of position coordinates. In this chapter we present the most common
types of measurements in land surveying. The two basic measurement types are angle (or
azimuth, or direction), and distance. And they are actually closely related, as the angle —
expressed in radians — equals the quotient of the distance along the arc of a circle, and its
radius.

As civil engineering activities mostly concern local and regional areas, we use a two di
mensional (Euclidean) geometry in the (local) horizontal plane. The height is used separately
as a third dimension. Azimuths, directions, angles, and distances are parametrized in terms
of twodimensional coordinates. The coordinates of a certain point i read ((𝑥1)𝑖 , (𝑥2)𝑖). Com
monly the coordinates of a point i are denoted as (𝑥𝑖 , 𝑦𝑖), but we deviate here, as to avoid
confusion with the model of observation equations 𝑦 = 𝐴𝑥 in the previous chapter; therefore
we uniquely use symbol 𝑥 for coordinates, and append appropriate indices to indicate the
dimension.

Next, in Section 9.5 we introduce the theory necessary to evaluate the precision of the
resulting position coordinate estimators. The last section of this chapter provides a review
of elementary measurement setups, together with an analysis of precision of the resulting
position coordinates.

9.1. Leveled height difference
A height difference 𝑦𝑖𝑗 obtained through leveling is simply the difference of the heights of the
two points involved:

𝐸(𝑦
𝑖𝑗
) = (𝑥)𝑗 − (𝑥)𝑖 (9.1)

This is a linear equation in the unknown parameters (𝑥)𝑖 and (𝑥)𝑗, and has been dealt with
before, see Section 7.3. With leveling, we deal with a onedimensional coordinate system; we
are only interested in the height of a point, and the height is represented by coordinate 𝑥.

9.2. Azimuth and angle measurements
The azimuth 𝑎𝑖𝑗 is the argument of the linesegment from point i to (target) point j,

𝐸(𝑎𝑖𝑗) = arctan
(𝑥1)𝑗 − (𝑥1)𝑖
(𝑥2)𝑗 − (𝑥2)𝑖

(9.2)

85
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Figure 9.1: Azimuth measurement 𝑎𝑖𝑗.
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Figure 9.2: Measurement of direction 𝑟𝑖𝑗, and measurement of angle 𝛼𝑗𝑖𝑘.

see Figure 9.1; we deal with twodimensional geometry. The azimuth provides the angle of
the linesegment from point i to j, with respect to a fixed reference direction, typically the
𝑥2axis. For measurements of azimuth we use the symbol 𝑎 rather than 𝑦; for distance we
use 𝑙 in the next section, rather than 𝑦.

For an observation of direction 𝑟𝑖𝑗, the zero reference — indicated by the dashed line in
Figure 9.2 — has an arbitrary offset (angle) with respect to the second coordinate axis 𝑥2. This
unknown offset parameter enters the observation equation (9.2); it should be subtracted from
the righthand side. All observations of direction taken with a single set up of the instrument,
share the same orientation offset.

𝐸(𝑟𝑖𝑗) = arctan
(𝑥1)𝑗 − (𝑥1)𝑖
(𝑥2)𝑗 − (𝑥2)𝑖

− 𝑂𝑖

An angle observation 𝛼𝑗𝑖𝑘 is just the difference of two azimuths, hence the angle 𝛼𝑗𝑖𝑘 at
point i from point k to point j, is just 𝑎𝑖𝑘 − 𝑎𝑖𝑗, see also Figure 9.2.

With Section 8.4, linearization of (9.2) with azimuth 𝑎𝑖𝑗 expressed in radians, yields

𝐸(Δ𝑎𝑖𝑗) = −
(𝑥2)𝑖𝑗,𝑜
𝑙2𝑖𝑗,𝑜

(Δ𝑥1)𝑖 +
(𝑥1)𝑖𝑗,𝑜
𝑙2𝑖𝑗,𝑜

(Δ𝑥2)𝑖 +
(𝑥2)𝑖𝑗,𝑜
𝑙2𝑖𝑗,𝑜

(Δ𝑥1)𝑗 −
(𝑥1)𝑖𝑗,𝑜
𝑙2𝑖𝑗,𝑜

(Δ𝑥2)𝑗 (9.3)

where (𝑥1)𝑖𝑗,𝑜 = (𝑥1)𝑗,𝑜 − (𝑥1)𝑖,𝑜, (𝑥2)𝑖𝑗,𝑜 = (𝑥2)𝑗,𝑜 − (𝑥2)𝑖,𝑜, and 𝑙2𝑖𝑗,𝑜 = (𝑥1)2𝑖𝑗,𝑜 + (𝑥2)2𝑖𝑗,𝑜. The
above equation follows by using that 𝑑 arctan(𝑥)/𝑑𝑥 = 1/(1 + 𝑥2).

9.3. Distance measurements
The Euclidean distance between points i and j is the length of the linesegment from point i
to point j,

𝐸(𝑙𝑖𝑗) = √((𝑥1)𝑗 − (𝑥1)𝑖)2 + ((𝑥2)𝑗 − (𝑥2)𝑖)2 (9.4)
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Figure 9.3: Measurement of distance in two dimensions between points i and j.

see Figure 9.3; we deal with twodimensional geometry.
Linearization of (9.4) yields

𝐸(Δ𝑙𝑖𝑗) = −
(𝑥1)𝑖𝑗,𝑜
𝑙𝑖𝑗,𝑜

(Δ𝑥1)𝑖 −
(𝑥2)𝑖𝑗,𝑜
𝑙𝑖𝑗,𝑜

(Δ𝑥2)𝑖 +
(𝑥1)𝑖𝑗,𝑜
𝑙𝑖𝑗,𝑜

(Δ𝑥1)𝑗 +
(𝑥2)𝑖𝑗,𝑜
𝑙𝑖𝑗,𝑜

(Δ𝑥2)𝑗 (9.5)

where (𝑥1)𝑖𝑗,𝑜 = (𝑥1)𝑗,𝑜 − (𝑥1)𝑖,𝑜, (𝑥2)𝑖𝑗,𝑜 = (𝑥2)𝑗,𝑜 − (𝑥2)𝑖,𝑜, and the approximate value for
the distance 𝑙𝑖𝑗,𝑜 = √(𝑥1)2𝑖𝑗,𝑜 + (𝑥2)2𝑖𝑗,𝑜.

In practice distance measurements can be subject to a scale factor and/or to an offset.
These aspects are beyond the scope of this part.

9.4. Idealization
In the mathematical model of observation equations 𝑦 = 𝐴𝑥 + 𝑒 (Chapter 8), the parameters
𝑥, for instance representing position coordinates of a point, are deterministic quantities. Each
parameter represents a single — though unknown — numerical value.

Next, we should realize that — for the purpose of surveying and making maps — we are
modeling the Earth’s surface and its topography and objects by means of basic geometric
entities. The real world is reduced to points, lines and polygons/areas, see also Figure 1.1.
For this reduction the surveyor relies on his insight and experience.

We should realize that there is a random component involved in this process. The corner
of a brickwall building can typically be identified quite well, though, looking at the millimeter
scale, you will see that not all bricks in a wall are perfectly aligned, and some walls are poorer,
see Figure 9.4 at left. For the center or border line of a ditch, the reduction will be much more
difficult; how can we identify the (shape of the) ditch in rough terrain? Where does the ditch
start and where does it end? The (additional) uncertainty may increase to the centimeter
or even decimeter level in this case. The additional random component is referred to as the
idealization error. Figure 9.4 shows two examples of reducing reality to a point (at left) and a
line (at right).

Idealization is about the question how well we can identify what we actually measure.
Upon concluding the surveying exercise, we can make for instance a statement about the
distance between two objects on Earth and when stating the precision of this distance, we
should account for the measurement precision, and also for the idealization precision, in order
to present realistic figures. In this part however, we will not account for this additional random
component in surveying. To say, our assumption is that we can identify the objects of interest
infinitely precise.

9.5. Analysis of measurement setup: confidence ellipse
In this section we present the confidence ellipse as a concept for evaluating the precision of
a random vector, and this is instrumental to (performance) analysis of a survey measurement
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Figure 9.4: Example of idealization and generalization. The corner of the brick wall, at left, you find on a two
dimensional map as a point, and the countryroad, at right, as a (series of) straight linesegment(s). In reality
the corner is not just a single discrete point, and the edge of the road, shown in orange, which separates the
asphaltsurface and the grass along the road, is really not a straight line. Geometric entities in maps, like points
and lines have infinitesimally small dimensions. A line connecting two points for instance is infinitesimally thin,
whereas objects in reality, like the edge of the road, have real dimensions. This reduction, or approximation of
dimensions is referred to as idealization and generalization. Accurately surveying the actual edge with twists and
turns every centimeter would be an unrealistic (and very costly) job.

setup. The outcome of surveying (that is, taking measurements and carrying out their con
sequent processing) is generally a set of position coordinates. We take measurements, and
we want to know where (a certain identified point on) an object is located. Observables are
turned into estimators for position coordinates, and the quality of these estimators needs to
meet requirements. An important aspect of quality is precision, and we present it in terms
of a confidence ellipse (for the estimators of the two position coordinates of the point under
consideration).

The confidence ellipse is an area (in the twodimensional space) centered at the estimated
position, which contains the true, but unknown position, with a certain stated probability.
In case the position is described with just a single coordinate (for instance when we are
only interested in the height) the confidence ellipse turns into an interval. And for a three
dimensional position coordinates vector, it is an ellipsoid. One can also use the general term
confidence region, rather than confidence ellipse, to suit any dimension. In the sequel we work
with twodimensional position coordinate vectors. One can for instance think of the indicated
center of a pillar to support a future bridge deck, and be concerned with the (horizontal)

coordinates of this point of interest: 𝑥 = ( 𝑥1𝑥2
). We are about to analyze the precision of

the obtained position coordinate estimators �̂�, which typically is a function of the observables
�̂� = 𝐺(𝑦) (nonlinear or linear), with variance matrix 𝑄�̂��̂�. The estimators are assumed to
be normally distributed here (remember that normally distributed observables yield normally
distributed estimators, with Section 7.2 and Eq. (8.6)).

We repeat Eq. (7.6), but now applied to �̂�, rather than 𝑦 in (7.6).

𝑓(�̂�) = 1
√|2𝜋𝑄�̂��̂�|

𝑒−
1
2 (�̂�−𝐸(�̂�))

𝑇𝑄−1�̂��̂� (�̂�−𝐸(�̂�)) (9.6)
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Figure 9.5: Joint probability density function (PDF) of 𝑧1 and 𝑧2.
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Figure 9.6: Histogram of 𝑧1 on the left, and of 𝑧2 on the right. The (theoretical) normal probability density function
is imposed: for 𝑧1 with standard deviation 𝜎𝑧1 = 2, and for 𝑧2 with standard deviation 𝜎𝑧2 = √2, and both 𝑧1 and
𝑧2 with zero mean.

The peak of the PDF is centered at 𝐸(�̂�) = 𝑥, the true value (as we assume an unbiased
estimator here); �̂� ∼ 𝑁(𝑥, 𝑄�̂��̂�). Mind, that in practice, we generally do not know the true
value …. What is actually of interest for precision analysis, is how close position estimates can
expected to be to the true value, therefore we consider the PDF of the difference 𝑧 = �̂� − 𝑥,
which we temporarily denote by 𝑧; 𝑧 ∼ 𝑁(0, 𝑄𝑧𝑧), which is easily obtained using Section 7.2
(subtracting a constant vector does not change the variance matrix, so 𝑄𝑧𝑧 = 𝑄�̂��̂�)). Such a
PDF is shown in Figure 9.5. The PDF is specified by the mean vector and the variance matrix,
in this twodimensional example:

𝐸 ( 𝑧1𝑧2
) = ( 00 ) 𝐷 ( 𝑧1𝑧2

) = ( 4 1
1 2 )

Figure 9.6 shows the histograms for 1000 samples, separately of �̂�1 and �̂�2, and Figure 9.7
(on the left) shows the samples (�̂�1,�̂�2) in a twodimensional scatter plot; in both cases they
have been corrected for their known true values (𝑥1,𝑥2). So, we had to know the true values
for the two coordinates, and we do so here for demonstration purpose.

In practice it is not very convenient to draw — for each pair of coordinate estimators —
the PDF in a full three dimensional image, as done in Figure 9.5. Though one would like to
present the main feature of this function. This is done by considering a crosssectional cut of
the bellshaped curve, horizontally, at a certain height 𝑘; this cut provides an iso contour line.

𝑓(𝑧) = 1
√|2𝜋𝑄𝑧𝑧|

𝑒−
1
2𝑧
𝑇𝑄−1𝑧𝑧 𝑧 = 𝑘
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Figure 9.7: On the left: scatter plot of 1000 samples (𝑧1,𝑧2); that is, all samples (�̂�1,�̂�2) have been corrected
for their known true value (𝑥1,𝑥2). On the right: contour of PDF, ellipse of concentration, of position estimator,
corrected for true position (𝑥1,𝑥2), hence, centered at the origin; an estimated position (�̂�1,�̂�2), also corrected for
the true position, is inside the ellipse with probability 1 − 𝛼 = 0.95 and 𝑘′ = 𝜒2𝛼(2, 0) = 5.9915.

hence

𝑧𝑇𝑄−1𝑧𝑧 𝑧 = −2 ln(𝑘√|2𝜋𝑄𝑧𝑧|) = 𝑘′ (9.7)

where ln is the natural logarithm, and vector 𝑧 ∈ ℝ𝑛. By doing this, 𝑓(𝑧) = 𝑘, we obtain an
ellipse. The border of this ellipse represents all points 𝑧 (endpoints of vectors 𝑧) with equal
probability density. Optionally it is mentioned that the axes of the ellipse can be found through
eigenvaluedecomposition of the variance matrix 1 .

The ellipse nicely captures the shape of the PDF, but still does not tell us much about how
much probability is actually contained. For this, we need another type of probability density
function, namely the Chisquared distribution.

If random vector 𝑧, consisting of 𝑛 random variables, is distributed as 𝑧 ∼ 𝑁(0, 𝑄𝑧𝑧), then
𝑧𝑇𝑄−1𝑧𝑧 𝑧 ∼ 𝜒2(𝑛, 0). The PDF is shown in Figure 9.8, and a table of the Chisquared distribution
can be found in Appendix D. Hence we have for the quadratic form

𝑇 = 𝑧𝑇𝑄−1𝑧𝑧 𝑧 ∼ 𝜒2(𝑛, 0)

in practice typically with 𝑛 = 2.
In terms of �̂� we have (using 𝑧 = �̂� − 𝑥)

(�̂� − 𝑥)𝑇𝑄−1�̂��̂� (�̂� − 𝑥) ∼ 𝜒2(𝑛, 0)

Hence, the above constant 𝑘′ simply follows from the Chisquared distribution. In the table
in Appendix D values can be found for the oneminusthe Cumulative Distribution Function,
or to say, the exceedence probability 𝛼. The area 𝑃[(�̂� − 𝑥)𝑇𝑄−1�̂��̂� (�̂� − 𝑥) ≤ 𝜒2𝛼(𝑛, 0)] = 1 − 𝛼
contains probability 1−𝛼, with the values for 𝛼 on the toprow in the table, and the 𝜒2𝛼(𝑛, 0)
values tabulated. For the points in this area holds that 𝑓(�̂� − 𝑥) ≥ 𝑘.

Above we considered the probability that the difference of the position estimator with the
true position is inside an ellipse, which equals the probability that the true (and in practice,
1optional: the orientation (principal axes) of the ellipse, or ellipsoid, can be found through eigenvalue
decomposition of variance matrix 𝑄𝑧𝑧:

𝑄𝑧𝑧 = 𝑈Λ𝑈𝑇

with orthogonal matrix 𝑈 = (𝑢1, … , 𝑢𝑛) containing the orthonormal eigenvectors 𝑢𝑖, and diagonal matrix Λ =
diag(𝜆1, … , 𝜆𝑛) with positive eigenvalues 𝜆𝑖, with 𝑖 = 1,… , 𝑛, see also Chapter 7 on symmetric matrices and
quadratic forms in [27]. The directions of the principal axes of the ellipse/ellipsoid are given by the vectors 𝑢𝑖 in
matrix 𝑈, and the length of the ith principal axis by √𝜆𝑖𝑘′.
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Figure 9.9: The diagram on the left shows, centered at the true position 𝑥, the area 𝑆 which contains the position
estimator �̂� with a certain probability (contour of the PDF). The diagram in the middle shows the confidence region
for the true position 𝑥, centered at the position estimate �̂�. The diagram on the right shows the area 𝑆 for the
difference of the position estimator and the true position 𝑧 = �̂�−𝑥, it is centered at the origin (sometimes referred
to as the errorregion). In these diagrams the area 𝑆 has simply been shown as a circle.

unknown) position is inside the ellips, but centered at the estimate �̂�. The ellipse of identical
shape as in Figure 9.7 on the right, but centered at the obtained estimate for the position
coordinate vector, that is at (�̂�1, �̂�2), is the confidence ellipse. It shows the area, which contains
the true (but unknown) position, with a certain, specified probability. After all, the goal of
surveying is to determine the position of a point of interest. We will never know the actual,
true value, but instead we come up with an estimate for it, and then we would like to know,
how close our estimate is to the actual, true position, see Figure 9.9.

In the sequel, in Section 9.7, we use the PDF contour ellipse to demonstrate the quality
of position solutions using several different measurement setups, for instance using solely
distance measurements, using solely azimuth measurements, and using a combination of
them. Such an analysis is typically done during the designphase of the survey.

Finally we note that with an estimator for a onedimensional quantity, we are considering
a single random variable, and the error region is just an interval, namely the ‘√𝑘′timessigma’
interval. In (9.7), the variance matrix then consists of just a single variance, (�̂� − 𝑥)𝑇𝑄−1�̂��̂� (�̂� −
𝑥) = 𝑘′, and we have

(�̂� − 𝑥)2
𝜎2�̂�

= 𝑘′

or

|�̂� − 𝑥| = √𝑘′𝜎�̂�

The corresponding confidence interval is centered at �̂�, and extends to both sides by √𝑘′𝜎�̂� and
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Figure 9.10: Geometric construction to determine position coordinates of new/unknown point 4 based on observed
distances to three neighbouring known points.

contains the true 𝑥 with a probability 1 − 𝛼, where values for 𝑘′ are tabulated in Appendix D,
as a function of 𝛼, with 𝑛 = 1.

9.6. Example: resection with distances
For a simple example of measuring three distances (from three known points) to determine the
position of a fourth point, we will analyse the quality (precision) of the coordinate estimators of
this fourth point. It is actually a ‘strength’analysis of the geometric construction (or surveying
network in general).

As shown in Figure 9.10 distances are measured from points 1, 2 and 3, to the new/unknown
point 4. The coordinates of the points 1, 2 and 3 are known and indicated in the figure: point
1=(0,0), point 2=(100√3, 0), point 3=(50√3, 150). Approximate values for the coordinates of
point 4 are (50√3, 50). Units can be assumed to be in meters. The three distance observables
are uncorrelated and all have variance 𝜎2 (for instance 𝜎 = 5 m; quite a large value, but done
for convenience here).

In the sequel we set up, and compute the design matrix as it occurs in the model of
linearized observation equations (using the approach of Section 8.4). Next, we compute the
variance matrix of the coordinate estimators for point 4.

The three nonlinear observation equations read:

𝐸(𝑙14) = √((𝑥1)4 − (𝑥1)1)2 + ((𝑥2)4 − (𝑥2)1)2

𝐸(𝑙24) = √((𝑥1)4 − (𝑥1)2)2 + ((𝑥2)4 − (𝑥2)2)2

𝐸(𝑙34) = √((𝑥1)4 − (𝑥1)3)2 + ((𝑥2)4 − (𝑥2)3)2

There are 𝑚 = 3 observations, and only 𝑛 = 2 unknown parameters, namely (𝑥1)4 and (𝑥2)4;
the other coordinates are known. With equation (9.5), the given coordinates of points 1, 2
and 3, and (𝑥1)4,𝑜 and (𝑥2)4,𝑜 as the approximate values for (𝑥1)4 and (𝑥2)4, the 3×2 design
matrix 𝐴 of the model of linearized observation equations (cf. Eq. (8.9)) becomes

𝐴 = (

1
2√3

1
2

−12√3
1
2

0 −1
)

The variance matrix is simply 𝑄𝑦𝑦 = 𝜎2𝐼3, a scaled identity matrix.
With (8.7) the variance matrix is obtained as

𝑄�̂��̂� = 𝜎2 (
2
3 0
0 2

3
)
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Figure 9.11: Coordinates estimator of point 4 based on distance observables to three neighbouring known points.
Shown is the contour ellipse of the PDF, with 97.5% confidence, 𝑘′ = 7.3778, as well as the outcome of carrying
out this experiment 𝑁 = 1000 times (each time measuring three distances and determining estimates for (𝑥1)4
and (𝑥2)4).
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Figure 9.12: Open leveling line from (known) point 1 to point n.

With this particular geometry (a resection of point 4 with three angles all nicely of 60
degrees), the two coordinate estimators are uncorrelated, and also happen to have equal
precision 𝜎(�̂�1)4 = 𝜎(�̂�2)4 . The contour ellipse of the PDF turns into just a circle, see Figure 9.11.
This figure also shows a scatter of 𝑁 = 1000 trials of this experiment; 975 of these trials should
lie inside the ellipse, and 25 should lie outside.

The above analysis of geometry and precision can be done once approximate values for
the unknown parameters are available. Actual measurements are not (yet) needed. As there
are no measuremements, we can not iterate as done in the example of Section 8.4, hence we
obtain only a first approximation of the measures of precision.

9.7. Elementary measurement setup
In this section we present six of the most elementary local measurement setups, three on
leveling, which is about positioning in just onedimension, and three on tachymetry (with
angles and distances) in twodimensional geometry. For these six setups we analyze the
precision of the coordinate estimators for the unknown points.

9.7.1. Leveling
A height difference 𝑦𝑖𝑗, observed with an optical leveling instrument in a local context, equals
the difference of two (orthometric) heights 𝑥𝑖 and 𝑥𝑗 (apart from a measurement error). The
observation equation 𝐸(𝑦

𝑖𝑗
) = 𝑥𝑗−𝑥𝑖 is linear in the unknown parameters (coordinates) 𝑥𝑖 and

𝑥𝑗. The coordinate system is one dimensional, and the direction of the axis (up) is determined
by gravity. The scale is provided by the marks on the levelling rod. With optical leveling, the
measurement precision is typically in the order of a few millimeter.

Figure 9.12 presents a socalled open leveling line. The height of point 1 is known from
an earlier survey, and one levels from 1 to 2, from 2 to 3 etc., until point n. The line consists
of (𝑛 − 1) stretches, also called levelruns.
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Figure 9.13: Leveling line which terminates at (known) points, point 1 and point n — connected leveling line.

In an open leveling line, the heights for the unknown points simply follow by adding the
observed height differences to the height of the known point, just like we did in the example
with three points in Chapter 7 (Section 7.3). This setup does not allow for an internal consis
tency check. In case a gross error is present in one of the levelled heightdifferences, it will
go unnoticed (and spoil part of the results). Hence, such a setup is not recommended for
critical applications!

When the height difference observables 𝑦
𝑖𝑗
have standard deviation equal to 𝜎𝑦𝑖𝑗 = 𝜎, and

also the given height of point 1 has standard deviation equal to 𝜎𝑦1 = 𝜎 (and all observables
are uncorrelated), then the variances for the points along the line are

𝜎2�̂�𝑖 = 𝑖𝜎
2 for 𝑖 = 1,… , 𝑛 (9.8)

This behaviour is shown as a straight line in Figure 9.14. The variance of the height increases
linearly with the number of the stretches (accumulation of errors).

What would be the variance of point 1, i.e. 𝜎2�̂�1 in case point n would be the known point
(instead of point 1)?

Figure 9.13 shows a socalled connected leveling line (or, closed level traverse). The
heights of both the first and last point are known from an earlier survey. The line connects
known points 1 and n, through a series of level runs, visiting unknown points 2, 3, …, n1.

This setup is more secure than an open leveling line, as there is now a check at the end
(the line is connected). There is now one more measurement than strictly needed (redundancy
equals one).

When the height difference observables 𝑦
𝑖𝑗
have standard deviation equal to 𝜎𝑦𝑖𝑗 = 𝜎, and

also the given heights of points 1 and n have standard deviation equal to 𝜎𝑦1 = 𝜎𝑦𝑛 = 𝜎 (and
all observables are uncorrelated), then the variances for the points along the line are

𝜎2�̂�𝑖 = 𝑖𝜎
2[1 − 𝑖𝜎2

(𝑛 + 1)𝜎2 ] for 𝑖 = 1,… , 𝑛 (9.9)

Compared with the variance expression for the open leveling line, an additional factor shows
up, between the square brackets, and it is smaller than 1, hence the variances of the heights
in the connected line are smaller than those in the open line. This behaviour is shown as a
curved line in Figure 9.14. The curve (as a function of 𝑖) is actually determined by the parabola
−𝑖2 + (𝑛 + 1)𝑖, which has its top at 𝑖 = 𝑛+1

2 . The curve starts at a (slightly) lower value for

point 1 than the straight line for the open line, and it is symmetric about 𝑖 = 512 .
The above expression for the variance can be checked for instance by considering an

example with 4 points, with points 1 and 4 given, and unknown points 2 and 3, and we have
three leveled height differences. The model of observation equations (8.2) reads

𝐸
⎛
⎜⎜⎜

⎝

𝑦
1

𝑦
12
𝑦
23
𝑦
34
𝑦
4

⎞
⎟⎟⎟

⎠

=
⎛
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⎝

1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 1

⎞
⎟⎟

⎠

⎛

⎝

𝑥1
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𝑥4

⎞

⎠
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Figure 9.14: Variance of heights determined for points along open and connected leveling line of 𝑛=10 points (on
the left), and along (closed) leveling loop of 9 points, where point 10 equals point 1 again, (on the right). Variance
𝜎2 was simply set to 1.

Figure 9.15: Leveling loop of (𝑛 − 1) points, where (known) point n equals point 1.

and the variance matrix is just a 5 × 5 identity matrix, scaled by 𝜎2. The expression for 𝜎2�̂�𝑖
can be checked by computing the 𝑄�̂��̂� matrix, cf. (8.7).

Figure 9.15 shows a leveling loop, (or, closed loop level traverse). The leveling ‘line’ now
returns to the starting point, and the height of the first point is known from an earlier survey.

Also this setup is more secure than an open leveling line, as there is a check: all observed
height differences added together need to yield just zero (return to the same point); this is the
loopclosure condition. There is now one more measurement than strictly needed (redundancy
equals one).

Suppose the leveling loop of Figure 9.15 consists of just four points, hence 𝑛−1 = 4. Then
there are 𝑚 = 5 observations: 𝑦12, 𝑦23, 𝑦34 and 𝑦41, and the height of point 1 is given and fixed
 this provides the fifth observation 𝑦1. There are three points with unknown heights: 𝑥2, 𝑥3, 𝑥4,
they are to be determined, and 𝑥1 is included in order to be able to relate ‘observation’ 𝑦1 (the
given height). The model of observation equations (8.2) reads:

𝐸
⎛
⎜⎜⎜

⎝

𝑦
1

𝑦
12
𝑦
23
𝑦
34
𝑦
41

⎞
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⎠

=
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0 0 −1 1
1 0 0 −1

⎞
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⎠

⎛

⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞

⎠

With 𝑚 = 5 observations and 𝑛 = 4 unknown parameters, there is a redundancy of 1; to say,
there is one measurement too much. This redundancy can be made explicit. The (expectation
of the) five observables can be described by four unknown parameters. This implies that there
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should hold a condition (𝑚 − 𝑛 = 1, hence one condition in this case) on the observations.
We multiply both left and right side by the same matrix

( 0 1 1 1 1 )⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝
𝐵𝑇

𝐸
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⎜⎜⎜

⎝

𝑦
1

𝑦
12
𝑦
23
𝑦
34
𝑦
41

⎞
⎟⎟⎟

⎠

= ( 0 1 1 1 1 )
⎛
⎜⎜

⎝

1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1

⎞
⎟⎟

⎠

⎛

⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞

⎠

resulting in

𝐸(𝑦
12
+ 𝑦

23
+ 𝑦

34
+ 𝑦

41
) = 0

and this is the above mentioned loop closure condition (the expectation operator is linear). It
implies that the sum of the leveled height differences is (expected to be) equal to zero. We
need to return to the same point, and this provides us with a check. In practice, the sum of
the height differences 𝑦12 + 𝑦23 + 𝑦34 + 𝑦41 ≠ 0 (though hopefully close to zero), and this is
referred to as the misclosure. For the (𝑚−𝑛)x𝑚 matrix 𝐵𝑇 describing the condition(s), holds
that 𝐵𝑇𝐴 = 0.

When the height difference observables 𝑦
𝑖𝑗
have standard deviation equal to 𝜎𝑦𝑖𝑗 = 𝜎, and

also the given height of point 1 has standard deviation equal to 𝜎𝑦1 = 𝜎 (and all observables
are uncorrelated), then the variances for the points along the line are

𝜎2�̂�𝑖 = 𝜎
2 + 𝜎2

𝑛 − 1(𝑖 − 1)(𝑛 − 𝑖) for 𝑖 = 1,… , 𝑛 (9.10)

where 𝑛 is indicating the number of points, as in Figure 9.15. The variance shows a behaviour
similar as for the connected line, see Figure 9.14 on the right, driven by a similar parabola,
but at a higher level than for the connected line (as there is only one known point involved in
the loop, versus two with the connected line). Obviously the variance of point 10 equals the
variance of point 1.

9.7.2. Intersection with azimuths
In Figure 9.16 the position of an unknown point is determined (in two dimensions) by observing
the azimuths at two known points 1 and 2. For four possible locations of the unknown point
(all on the line 𝑥1 = 5) the PDF contour ellipse is given.

When the unknown point is close to the line connecting the points 1 and 2 (dashed line,
which parallels the 𝑥1axis here), the precision is good in the 𝑥2direction (perpendicular to the
connection line), but very poor in the 𝑥1 direction (along the connection line). This situation is
reversed when the point is located far away (to the top or bottom of the graph). An intersection
of the two azimuthlines at the unknown point, at a right angle, delivers a homogeneous
precision (with the ellipse of concentration being close to a circle).

9.7.3. Polar coordinates
In two dimensions the position of an unknown point can be also be determined using one
measurement of azimuth and one measurement of distance, taken at a single known point.
This is the typical way of working with a tachymeter or a total station: measuring distances
and azimuths (or directions) to points to be determined. In Figure 9.17 PDF contour ellipses
are given again for the same four possible locations of the unknown point.
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Figure 9.16: Precision of positioning in two dimensions using azimuths, measured at (known) points 1 and 2; PDF
contour ellipses (𝑃=0.3935) for four possible locations of the unknown point. For visualization of the ellipses, the
standard deviation was set as 𝜎𝑎 = 0.13 radian.
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Figure 9.17: Precision of positioning in two dimensions using azimuths and distances (polar coordinates at point 1);
PDF contour ellipses for four possible locations of the unknown point. For visualization of the ellipses, the standard
deviations were set as 𝜎𝑎 = 0.13 radian, and 𝜎𝑙 = 0.30.

With the particular choice for the azimuth and distance observables’ standard deviations
as noted in Figure 9.17, a homogeneous precision is achieved for the two coordinates of the
unknown point (ellipse close to a circle), provided that the unknown point is not too far away
from the known station 1. For points far away, one has to realize that a fixed uncertainty
in the measurement of angle translates — at a larger distance — into a larger uncertainty in
the position, in the direction perpendicular to the line connecting the unknown point and the
instrument.

9.7.4. Intersection with distances
Finally we determine the position of an unknown point using two measurements of distance,
a set up which is pretty much similar to the example with azimuths in one of the previous
sections. From each of the two known points a distance is measured to the unknown point.
In Figure 9.18 PDF contour ellipses are given for the same four possible locations of the
unknown point. The standard deviation of the distance observable was kept fixed, whereas
in practice it may vary with distance (typically, larger standard deviation for larger distances).

When the unknown point is close to the line connecting the points 1 and 2 (dashed line,
which parallels the 𝑥1axis), the precision is good in the 𝑥1direction (the direction along the
connection line), but very poor in the other direction (perpendicular). This situation is reversed
when the point is located far away (to the top or bottom of the graph). An intersection of the
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Figure 9.18: Precision of positioning in two dimensions using distance measurements at points 1 and 2; PDF
contour ellipses for four possible locations of the unknown point. For visualization of the ellipses, the standard
deviation was set as 𝜎𝑙 = 0.30.

two distance lines at the unknown point, at a right angle, delivers a homogeneous precision
(with the ellipse of concentration being close to a circle).



10
Validation

In Chapter 8 we introduced the mathematical model 𝑦 = 𝐴𝑥 + 𝑒, with 𝑚 ≥ 𝑛, where 𝑚 is
the dimension of vector 𝑦, and 𝑛 the dimension of vector 𝑥. The system 𝑦 = 𝐴𝑥 is generally
not consistent, hence, 𝑦 ≠ 𝐴𝑥. The leastsquares estimate (8.4), and the minimum variance
estimator (8.6) were introduced, Sections 8.3.2 and 8.3.4. Once an estimate �̂� for the unknown
parameters is available, one can compute an estimate for the observations: �̂� = 𝐴�̂�, and this
system is consistent. One could regard this parameter estimation as ‘changing’ (or adjusting)
the observed values from 𝑦 to �̂� in order to turn a nonconsistent system into a consistent
one. As outlined with the leastsquares criterion (8.5), one keeps vector 𝑦 − �̂� as short as
possible, the observed values should be ‘changed only as little as possible’.

In this chapter we introduce the leastsquares residuals, and show how they can be used
in an overall consistency check, to answer the question whether the collected measurements
𝑦 and the assumed model 𝐴𝑥 can be deemed to be mutually consistent. Next we present a
worked example of linefitting (regression). Eventually we briefly introduce the more advanced
(optional) subject of observation testing, and present the final results of our data processing
and analysis.

10.1. Leastsquares residuals
Once an estimator �̂� is available for the vector of observables, the leastsquares residuals
follow as

�̂� = 𝑦 − �̂� (10.1)

The leastsquares residuals measure the difference between the observations (as measured)
𝑦, and the estimated, or adapted ones �̂� (see Section 8.3.2, �̂� = 𝐴�̂�). The leastsquares
residuals provide an estimate for the (unknown) measurement error 𝑒 (that is why also the
residuals are denoted with a hatsymbol). They carry important diagnostic information about
the parameter estimation process. When the residuals are small, the situation is looking good.
One does not need to ‘change’ the observed values by much, in order to make them fit into
the model 𝐴𝑥. However, when they are large, this might be a reason for reconsideration. It
could be that there are large outliers or faults present in the measurements (e.g. entering an
observed height difference as 0.413 m, instead of 0.143 m), or that the assumed model is
not appropriate for the case at hand (in a dynamic system, with a moving object, we may
assume that the object is moving with constant velocity, but this may turn out not to be the
case). Small residuals tend to be OK — large ones are not. But what is small, and what is
big? Fortunately, we can devise an objective criterion to judge on their size.

99
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10.1.1. Overall model test  consistency check
When the data are normally distributed, 𝑦 ∼ 𝑁(𝐴𝑥, 𝑄𝑦𝑦), under the working model (the null
hypothesis), then also the residuals will be normally distributed (with zero mean). It can be
shown — though the proof is omitted here — that �̂�𝑇𝑄−1𝑦𝑦 �̂� has — under the working model
(8.2) — a central Chisquared distribution with 𝑚−𝑛 degrees of freedom, hence 𝜒2(𝑚−𝑛, 0)
(from the 𝑚vector of observations, 𝑛 unknown parameters in 𝑥 are estimated, and hence
only (𝑚 − 𝑛) degrees of freedom are ‘left’ for the residuals). The Chisquared distribution
was introduced in Section 9.5, and shown in Figure 9.8. The squared norm of the residuals
vector �̂�𝑇𝑄−1𝑦𝑦 �̂� is an overall measure of consistency1 2. It provides an objective criterion on
judging the amount by which we needed to ‘change’ the observed values, to fit the assumed
or supposed model (𝐴𝑥).

𝑇 = �̂�𝑇𝑄−1𝑦𝑦 �̂� ∼ 𝜒2(𝑚 − 𝑛, 0) (10.2)

Now one can set a level of significance (probability) 𝛼, see Chapter 26 in [2], e.g. 5%,
and not accept the residual vector �̂�, once its squared norm is located in the upper 5% of
the distribution (right tail); occurrence of such a value is deemed to be too unlikely to be true
under the working model. When there are large outliers or faults present in the observations,
or when the assumed model is not appropriate, the residuals tend to be larger, leading to a
larger value for the teststatistic 𝑇, and hence we set a rightsided critical region.

In practice, one computes 𝑇 = �̂�𝑇𝑄−1𝑦𝑦 �̂�, and retrieves threshold 𝑘′ = 𝜒2𝛼(𝑚−𝑛, 0) from the
table and concludes (decides):

• model and data are consistent when 𝑇 < 𝑘′

• model and data are not consistent when 𝑇 > 𝑘′

For example with𝑚=5 and 𝑛=2,𝑚−𝑛=3, and with a 5% level of significance, the threshold
(or critical) value 𝑘′ for the above squared norm of the leastsquares residuals, 𝑇, is 7.8147,
see the table in Appendix D (𝜒2𝛼(3, 0) = 7.8147).

10.1.2. Simplification
In the simple case that the observables’ variance matrix is a diagonal matrix 𝑄𝑦𝑦 = diag(𝜎2𝑦1 , 𝜎2𝑦2 , … , 𝜎2𝑦𝑚)
(all observables are uncorrelated), the above overall model test statistic 𝑇 can be given a sim
ple and straightforward interpretation. Namely

𝑇 = �̂�𝑇𝑄−1𝑦𝑦 �̂� =
𝑚

∑
𝑖=1

�̂�2𝑖
𝜎2𝑦𝑖

=
𝑚

∑
𝑖=1
(
�̂�𝑖
𝜎𝑦𝑖
)
2

(10.3)

and it compares — per observation — the residual �̂�𝑖 with the standard deviation 𝜎𝑦𝑖 of, i.e.
the expected uncertainty in, the observable 𝑦

𝑖
.

The overall model test statistic equals the sum of all those 𝑚 squared ratios. The overall
model test, as the name says, aims to detect, in general sense, any inconsistency between
observed data and the proposed or assumed model.

1actually a measure of inconsistency
2formally �̂�𝑇𝑄−1𝑦𝑦 �̂� is the square of the weighted norm (weighted because of 𝑄−1𝑦𝑦) of the leastsquares residuals;
in statistics unweighted �̂�𝑇�̂� is referred to as sum of squared residuals (SSR)
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10.1.3. Discussion
As an example we consider the case in which the same unknown distance is measured twice, cf.
Section 8.3.1. If one of these measurements is biased by a large amount (for instance 10 m),
and the other is not, then the overall model test will likely detect that the two measurements
are not consistent with the model, namely, according to the model (measuring the same
distance twice) the numerical values of two measurements should be the same, or close
together. Intuitively, as the measurements are not close together, this gives rise to suspicion
(there might be something wrong with the measurements). Anomalies in the measurements
which cause the data to be (still) consistent with the assumed model cannot be detected by
this test. In our example, if both observations are biased in the same way, let us say by 10 m,
then the two observations are still consistent (with each other in the model; they are both
in error). Intuitively, as their values are the same or close together, this does not raise any
suspicion. Being able to detect all relevant anomaly scenarios is part of designing a good
measurement setup.

10.1.4. Example: repeated measurements [*]
Suppose 𝑚 measurements of the same unknown quantity are made. Then the general model
of observation equations 𝐸(𝑦) = 𝐴𝑥; 𝐷(𝑦) = 𝑄𝑦𝑦 (8.2) reads:
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⎝
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1
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2
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𝑦
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⎞
⎟
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𝑦
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⎞
⎟
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= 𝜎2𝐼𝑚

where we assumed that all observables have equal precision (all variances equal to 𝜎2), and
there is no correlation. There are 𝑚 observations, and there is 𝑛 = 1 unknown parameter.

In this case, the minimum variance estimate �̂� for the unknown parameter 𝑥, equals just
the mean of the observations, similar to (6.12).

In this simple example �̂�𝑖 = �̂�, and hence, the leastsquares residuals �̂�𝑖 = 𝑦𝑖 − �̂�. The
squared norm of the residuals vector becomes

𝑇 = �̂�𝑇𝑄−1𝑦𝑦 �̂� =
1
𝜎2

𝑚

∑
𝑖=1
�̂�2𝑖 =

1
𝜎2

𝑚

∑
𝑖=1
(𝑦𝑖 − �̂�)2

which shows that, in this case, this overal model teststatistic is closely related to the sample
variance (6.14), which you determine based on measurements taken. We have

𝑇
𝑚 − 1 =

1
𝜎2

1
𝑚 − 1

𝑚

∑
𝑖=1
(𝑦𝑖 − �̂�)2 =

�̂�2
𝜎2

where we use 𝑚 instead of 𝑁 as in (6.14). The overall model test statistic equals, in this case,
the ratio of the sample variance and the formal, apriori variance.

10.2. Example
In this example we consider the classical problem of line fitting. This problem is frequently en
countered in science and engineering. One can think of measuring the extension of a certain
object (e.g. of steel) due to temperature, for which one assumes a linear behaviour, so the
length of the object is measured, at different temperatures, and next one would like to deter
mine the length of the object at some reference temperature and the coefficient of extension,
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i.e. by how much it extends for every increase of one degree in temperature. In literature,
this subject is often referred to as regression analysis, see e.g. Chapter 6 on orthogonality and
leastsquares in [27], in particular Section 6 with applications to linear models. The subject
can be seen much broader however, namely as curve fitting. The principle is not restricted to
just straight lines, one can also use parabolas and higher degree polynomials for instance.

In this example we consider a vehicle which is driving along a straight line, and we are
interested in the position along the road. Therefore, a laser tracker is used, and this device
measures/reports the position of the vehicle every second. For convenience, the lasertracker
is at the origin of this onedimensional coordinate system.

Over a period of four seconds, we take measurements: 𝑦 = (𝑦1, 𝑦2, 𝑦3, 𝑦4)𝑇, hence the
vector of observations has dimension 𝑚 = 4. Correspondingly at times 𝑡1, 𝑡2, 𝑡3 and 𝑡4, the
unknown positions are 𝑥(𝑡1), 𝑥(𝑡2), 𝑥(𝑡3) and 𝑥(𝑡4). The measurements equal the unknown
positions, apart from measurement errors, i.e. 𝑦𝑖 = 𝑥(𝑡𝑖) + 𝑒𝑖 for 𝑖 = 1,… , 4.
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⎜

⎝

𝑦
1
𝑦
2
𝑦
3
𝑦
4

⎞
⎟

⎠

= ⎛

⎝

𝑥(𝑡1)
𝑥(𝑡2)
𝑥(𝑡3)
𝑥(𝑡4)

⎞

⎠

= ⎛

⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎠

⎛

⎝

𝑥(𝑡1)
𝑥(𝑡2)
𝑥(𝑡3)
𝑥(𝑡4)

⎞

⎠

In case we determine these 𝑛 = 4 four unknown positions from the 𝑚 = 4 four observed
positions, estimation is pretty trivial, namely �̂�(𝑡𝑖) = 𝑦𝑖 for 𝑖 = 1,… , 4.

We have reasons however, to assume that the vehicle is driving at constant speed, and
thereby we can model the unknown motion of the vehicle, by just an unknown initial position
𝑥(𝑡0), and its velocity �̇�.

⎛

⎝

𝑥(𝑡1)
𝑥(𝑡2)
𝑥(𝑡3)
𝑥(𝑡4)

⎞

⎠

= ⎛

⎝

1 (𝑡1 − 𝑡0)
1 (𝑡2 − 𝑡0)
1 (𝑡3 − 𝑡0)
1 (𝑡4 − 𝑡0)

⎞

⎠

( 𝑥(𝑡0)�̇� )

which we can substitute in the above system of observation equations, and hence

𝐸
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⎜

⎝

𝑦
1
𝑦
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𝑦
3
𝑦
4

⎞
⎟

⎠

= ⎛

⎝

1 (𝑡1 − 𝑡0)
1 (𝑡2 − 𝑡0)
1 (𝑡3 − 𝑡0)
1 (𝑡4 − 𝑡0)

⎞

⎠⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝
𝐴

( 𝑥(𝑡0)�̇� )
⏝⎵⎵⏟⎵⎵⏝

𝑥

Now there are still 𝑚 = 4 observations, but just 𝑛 = 2 unknown parameters in vector 𝑥. The
distance observables by the laser tracker are all uncorrelated, and all have the same variance
𝜎2. Hence 𝑄𝑦𝑦 = 𝜎2𝐼4. Standard deviation 𝜎 can be taken here as 𝜎 = 1.

In the sequel we develop the example into a real numerical example. The observation
times are 𝑡1 = 1, 𝑡2 = 2, 𝑡3 = 3 and 𝑡4 = 4 seconds, and 𝑡0 = 0 (and timing is assumed
here to be perfect — no errors; all coefficients of matrix 𝐴 are known — when this assumption
cannot be made, refer to Appendix B.6).

As can be seen in Figure 10.1, we try to fit a straight line through the observed data points.
Therefore we estimate the offset/intercept of the line 𝑥(𝑡0), and its slope �̇�; in terms of regres
sion, they are the (unknown) regression coefficients. In this example time 𝑡 is the explanatory
or independent variable (also called the regressor); the (observed) position depends on time
𝑡. And, the observation 𝑦 is the dependent (or response) variable. Leastsquares estimation
will yield a best fit of the line with the observed data points, through minimizing (8.5).
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Figure 10.1: Line fitting on day 1 (left) and day 2 (right). Shown are the observed data points as blue circles, and
the straight line in red, fitted by means of leastsquares.

The experiment was repeated the next day, and in the sequel we consider — simultaneously
— the outcomes of both experiments. The measurements on day 1 were 𝑦 = (14, 20, 20, 24)𝑇,
and on day 2 𝑦 = (28, 20, 16, 36)𝑇. In Figure 10.1, the observed distances (in meters) are
shown, together with the fitted line, based on the leastsquares estimates. Verify yourself
that, with (8.6), one obtains

�̂� = ( 123 ) for day 1, and �̂� = ( 202 ) for day 2

with units in meters and meters per second respectively.
With �̂�(𝑡0) = 12 and ̂�̇� = 3 on day 1, one can determine �̂� through �̂� = 𝐴�̂�, and eventually

obtain �̂� = 𝑦 − �̂�. And do this for day 2 as well.

�̂� = ⎛

⎝

−1
2
−1
0

⎞

⎠

for day 1, and �̂� = ⎛

⎝

6
−4
−10
8

⎞

⎠

for day 2

From these numbers, and also Figure 10.1, one can already conclude that for day 1 (on the
left) we have a pretty good fit, while on day 2 (on the right) the fit is pretty poor, likely a second
degree polynomial would do here much better (quadratic polynomial). It indicates that the
motion of the vehicle on day 2 has not really been at constant speed. For an objective criterion
in judging a good and poor fit, we use the squared norm of the residual vector (10.2).

𝑇 = �̂�𝑇𝑄−1𝑦𝑦 �̂� = 6 for day 1, and 𝑇 = �̂�𝑇𝑄−1𝑦𝑦 �̂� = 216 for day 2

With the table in Appendix D, we find that with 𝑚 − 𝑛 = 2 and 𝛼 = 0.01 the threshold value
equals 𝜒2𝛼 = 9.2103, and hence the line fit of day 1 is not rejected (6 < 9.2103), but the line
fit of day 2 is rejected (216 > 9.2103)!

At this stage we recall that leastsquares estimation is driven, see (8.5), by minimization of
the squared norm of the vector 𝑦−𝐴𝑥, see Figure 10.2. Leastsquares minimizes the objective
function min𝑥 ‖𝑦−𝐴𝑥‖2. Vector 𝑦−𝐴𝑥 contains the differences between the actual observa
tions 𝑦 and the modeled observations by 𝐴𝑥. One should choose values for the elements in
vector 𝑥, such that the squared norm of th vector 𝑦 − 𝐴𝑥 is at minimum. Figure 10.2 shows
at left, for the observations of day 1, along the vertical axis, the squared norm of the vector
𝑦 − 𝐴𝑥, which is just a single number, as a function of 𝑥(𝑡0) and �̇� in the horizontal plane,
with offset parameter 𝑥(𝑡0) along the axis in front, and slope parameter �̇� along the axis to
the back.
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Figure 10.2: The sum of squared residuals as a function of 𝑥(𝑡0) and �̇�. At right, actually the log10value is
shown. The minimum, which is equal to 6, is attained for 𝑥(𝑡0)=12 and �̇�=3, indicated by the dotted lines, hence
min𝑥 ‖𝑦 − 𝐴𝑥‖2 = 6 (for day 1).

We have to keep in mind that the true motion of the vehicle is unknown. It is our assump
tion that we can mathematically describe the motion through a constant velocity model. For
day 1 there is no indication that this is not working. But for day 2, a constant velocity model,
most likely, is not providing a proper description of the actual motion. Maybe a quadratic
model (constant acceleration) gives a better/acceptable fit.

𝐸
⎛
⎜

⎝

𝑦
1
𝑦
2
𝑦
3
𝑦
4

⎞
⎟

⎠

=
⎛
⎜⎜

⎝

1 (𝑡1 − 𝑡0)
1
2(𝑡1 − 𝑡0)

2

1 (𝑡2 − 𝑡0)
1
2(𝑡2 − 𝑡0)

2

1 (𝑡3 − 𝑡0)
1
2(𝑡3 − 𝑡0)

2

1 (𝑡4 − 𝑡0)
1
2(𝑡4 − 𝑡0)

2

⎞
⎟⎟

⎠

(
𝑥(𝑡0)
�̇�(𝑡0)
�̈�

)

There are now 𝑛 = 3 unknown parameters, with still 𝑚 = 4 observations.
Mind that if we go for a third degree polynomial (cubic polynomial), we will have 𝑛 = 4

unknown parameters, and all information contained in the 𝑚 = 4 observations is strictly
needed to determine the unknown parameters, and ‘nothing will be left’ for the leastsquares
residuals, as 𝑚−𝑛 = 0. Without redundancy, the overall model test gets void. In that case it
looks like the observations perfectly fit the assumed model, but you actually do not have any
means to verify this.

10.3. Observation testing and outlook [*]
The squared norm of the residuals is an overall measure of consistency between observations
and assumed mathematical model. The statistical test of �̂�𝑇𝑄−1𝑦𝑦 �̂� being smaller or larger than
the critical value 𝑘′ from the Chisquared distribution is referred to as the overall model test,
see Section 10.1.1. In literature you may also encounter it as the Ftest, then �̂�𝑇𝑄−1𝑦𝑦 �̂�/(𝑚 −
𝑛) ∼ 𝐹(𝑚 − 𝑛,∞, 0) under the working model (nullhypothesis), where 𝐹 represents the F
distribution.

The test can be derived from the principle of statistical hypothesis testing. More specific
statistical hypothesis tests exist, for instance tests to identify outliers, blunders, faults and
anomalies in single observations. A true coverage of this subject is beyond the scope of this
book, but we will introduce — without any derivation, or proof of optimality — a simple test
which aims to identify an outlier in a set of observations (then only one observation from this
set is affected by the outlier). Typically this test is used multiple times, namely to test each
of the 𝑚 observations in vector 𝑦 = (𝑦1, … , 𝑦𝑚)𝑇 separately. It is based again on the least
squares residuals �̂� = 𝑦 − �̂�. Using the error propagation law (7.9), with (8.6), and �̂� = 𝐴�̂�,
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one can derive that

𝑄�̂��̂� = 𝑄𝑦𝑦 − 𝐴(𝐴𝑇𝑄−1𝑦𝑦𝐴)−1𝐴𝑇 = 𝑄𝑦𝑦 − 𝐴𝑄�̂��̂�𝐴𝑇

where 𝑄�̂��̂� was given by (8.7).
Under the working model the leastsquares residuals have zero mean, hence �̂� ∼ 𝑁(0, 𝑄�̂��̂�),

and the vector �̂� is normally distributed as it is a linear function of 𝑦, which is also taken to be
normally distributed.

The leastsquares residuals �̂� is a vector with 𝑚 random variables �̂� = (�̂�1, �̂�2, … , �̂�𝑚)
𝑇. For

each of the residuals we have �̂�𝑖 ∼ 𝑁(0, 𝜎
2
�̂�𝑖) with 𝑖 = 1,… ,𝑚. Usually, if (just) observation 𝑦𝑖

contains a large error, the corresponding residual �̂�𝑖 will deviate (substantially) from zero. We
use this to propose — valid only for the case when the observables have a diagonal variance
matrix 𝑄𝑦𝑦 — the wtest statistic as

𝑤𝑖 =
�̂�𝑖
𝜎�̂�𝑖

(10.4)

and check whether it deviates from zero.
Division of the residual by the standard deviation 𝜎�̂�𝑖 (you may use (7.9) again) causes the

wtest statistic to be standard normally distributed: 𝑤𝑖 ∼ 𝑁(0, 1). In fact, it is the normalized
residual. Setting a level of significance 𝛼, one can find the critical value. Mind that deviations
both in positive and negative direction may occur. Hence, the level of significance 𝛼 is split
into 𝛼

2 for the right tail, and
𝛼
2 for the left tail. The critical value �̃� = 𝑁𝛼

2
(0, 1) follows from the

table in Appendix C. The hypothesis ‘no outlier present in observation 𝑦𝑖 ’ is rejected if |𝑤𝑖| > �̃�,
i.e. if 𝑤𝑖 < −�̃� or 𝑤𝑖 > �̃�. The test is typically done for all observations 𝑖 = 1,… ,𝑚.

In practice the largest of the wteststatistics (in absolute sense) indicates the most likely
faulty observation. This observation is removed from the data, and estimation and validation
is repeated with one less observation, until no more measurements are rejected, or until
redundancy runs low. This procedure of ‘data checking’ can be carried out automatedly,
without human intervention, and allows for a robust processing of the measurements. This
checking provides a safeguard against producing, unknowingly, largely incorrect results.

There are many alternative approaches to robust estimation, delivering robust estimators,
which are insensitive to outliers, but these are beyond the scope of this book.

10.4. Example — continued
Eventually we wrap up, and present the final results of our data processing and analysis. We
have computed the estimates for the parameters of interest in the example of Section 10.2,
namely the initial position 𝑥(𝑡0) and the velocity �̇�, and we have verified the consistency of
the model and the data.

In Figure 10.3 we consider the data of day 1, hence giving a good fit, see Figure 10.1
at left. In Figure 10.3 at left, we present again the four measurements, and, we indicate
with them the measurement uncertainty. The standard deviation of each measurement was
𝜎 = 1. The graph presents the socalled errorbars for a confidence level of 95%. When the
observables are normally distributed, one can verify with the table in Appendix C, that the
errorbar extends by 𝑟𝛼𝜎 to either side of the observed value, with 𝑟𝛼 = 1.96.

The graph at right presents again the fitted line, based on the leastsquares estimate �̂�.
As outlined in the introduction of this chapter, estimates for the observations can be computed
as �̂� = 𝐴�̂�. With this, you can check yourself that while the observation 𝑦2 = 20, �̂�2 = 18 (and
the latter is located on the red line).
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Figure 10.3: Line fitting on day 1: observed data points as small blue circles, with errorbars, also in blue, at the
left, and the straight line fitted by means of leastsquares with confidence interval at the right.

The corresponding variance matrix of �̂� can be found, using (7.9) on �̂� = 𝐴�̂� as (7.7),
as 𝑄�̂��̂� = 𝐴𝑄�̂��̂�𝐴𝑇, with 𝑄�̂��̂� from (8.7). So, for the estimated observation at 𝑡2 holds that
𝜎�̂�2 ≈ 0.55, whereas 𝜎𝑦2 = 1 (hence, it is much smaller). Then the 95% confidence interval
for the true 𝑦2 is centered at �̂�2, and extends to 𝑟𝛼𝜎�̂�2 ≈ 1.07 on either side (and hence
it is much smaller than with the individual observation, in the graph at left). Suppose the
experiment is repeated, then 95% of the realizations of this (random) interval will actually
contain the true position, see also Chapter 23 in [2]. In fact, the confidence interval can be
presented for the position at any time 𝑡, see the dashed blue lines on either side of the fitted
line, in the graph at right; it is the confidence interval for 𝑦(𝑡) based on �̂�(𝑡), for any time 𝑡.

10.5. Exercises and worked examples
This section presents several problems with worked answers on parameter estimation and
validation.

Question 1 To determine the sea level height in the year 2000, and also its rate of change
over time, five observations of the sea level are available, for instance from a tide gauge
station. The observations are:

• 𝑦1 = 25 mm, in the year 1998
• 𝑦2 = 24 mm, in the year 1999
• 𝑦3 = 27 mm, in the year 2000
• 𝑦4 = 26 mm, in the year 2001
• 𝑦5 = 28 mm, in the year 2002

Based on these five observations, compute the leastsquares estimates for the sea level in the
year 2000 and the rate of change. All quantities are referenced to the start of the year. The
rate of change can be considered constant over the time span considered.

Answer 1 Similar to the example of Section 10.2, the model reads

𝐸
⎛
⎜⎜⎜

⎝

𝑦
1
𝑦
2
𝑦
3
𝑦
4
𝑦
5

⎞
⎟⎟⎟

⎠

=
⎛
⎜⎜

⎝

1 −2
1 −1
1 0
1 1
1 2

⎞
⎟⎟

⎠⏝⎵⎵⎵⏟⎵⎵⎵⏝
𝐴

( 𝑥(𝑡0)�̇� )
⏝⎵⎵⏟⎵⎵⏝

𝑥
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and basically we need to fit a straight line through five data points. In the above 𝑦 = 𝐴𝑥
model, 𝑥(𝑡0) is the unknown sea level height in the year 2000 (expressed in [mm]), and �̇� is
the (assumed constant) rate of change of the sea level (and also unknown, and expressed in
[mm/year]). On the left hand side we have the five observations, of which the third, 𝑦3, is
the observed sea level height in the year 2000 (in [mm]). For example, the last observation,
𝑦5, is related to the two unknown parameters as: 𝑦5 equals (on average) the sum of the
sea level in the year 2000 𝑥(𝑡0), plus twice the yearly change �̇�. These two coefficients, 1
and 2, show up, as the last row, in the Amatrix. There is no information given with regard
to the precision of the observables (no matrix 𝑄𝑦𝑦), hence we use the basic leastsquares
equation (8.4) �̂� = (𝐴𝑇𝐴)−1𝐴𝑇𝑦.

𝐴𝑇𝐴 = ( 5 0
0 10 ) (𝐴𝑇𝐴)−1 = (

1
5 0
0 1

10
)

and �̂� = (𝐴𝑇𝐴)−1𝐴𝑇𝑦 becomes

�̂� = (
1
5 0
0 1

10
)( 1 1 1 1 1

−2 −1 0 1 2 )
⎛
⎜⎜

⎝

25
24
27
26
28

⎞
⎟⎟

⎠

= (
26
8
10
)

The leastsquares estimate for the sea level height in the year 2000 is 26 mm, and the rate of
change is 0.8 mm/year. Note that the leastsquares estimate for the height in the year 2000
does not equal the observed height (𝑦3). The leastsquares estimate is determined based on
all available observations. In an era of climate change and sealevel rise, conscientious and
responsible analysis and interpretation of sealevel height measurements over time is essential
to design and maintenance of coastal defense infrastructure against flooding, see Figure 10.4.

Figure 10.4: The Oosterscheldekering, a series of dams and storm surge barriers to protect the province of Zeeland
from flooding from the NorthSea. Photo by Rijkswaterstaat, 2007, taken from Beeldbank Rijkswaterstaat, under
BYNC license [28].

Question 2With the model and observations of the previous question, determine whether
the overall model test is passed or not, when the level of significance is set to 10%. The
observables can be assumed to be all uncorrelated, and have a standard deviation of 1 mm
(which is not really a realistic value in practice, but it is fine for this exercise).

Answer 2 The variance matrix of the observables reads 𝑄𝑦𝑦 = 𝐼5, and this does not change
anything to the computed leastsquares estimates (see Eq. (8.6)). The overall model test is

https://beeldbank.rws.nl/MediaObject/Details/313550
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𝑇 = �̂�𝑇𝑄−1𝑦𝑦 �̂�, hence we need the vector of leastsquares residuals (10.1) �̂� = 𝑦 − �̂� = 𝑦 − 𝐴�̂�.

⎛
⎜⎜

⎝

�̂�1
�̂�2
�̂�3
�̂�4
�̂�5

⎞
⎟⎟

⎠

=
⎛
⎜⎜

⎝

25
24
27
26
28

⎞
⎟⎟

⎠

−
⎛
⎜⎜

⎝

24.4
25.2
26.0
26.8
27.6

⎞
⎟⎟

⎠

=
⎛
⎜⎜

⎝

0.6
−1.2
1.0
−0.8
0.4

⎞
⎟⎟

⎠

Then the value for the overall model test statistic becomes 𝑇 = �̂�𝑇𝑄−1𝑦𝑦 �̂� = 3.6. The threshold,
with 𝛼 = 0.1, is 𝑘′ = 𝜒2𝛼(𝑚 − 𝑛, 0), and 𝑚 = 5 and 𝑛 = 2, hence 𝑚 − 𝑛 = 3. With the table in
Appendix D we obtain 𝑘′ = 𝜒20.1(3, 0) = 6.2514, and hence 𝑇 < 𝑘′, and the overall model test
is accepted. There is no reason to suspect that something is wrong; the assumed model and
the made observations seem to be in agreement with each other, they seem to be consistent;
the fit is good.

Figure 10.5: The deflection 𝑑 of a bridge deck is observed at four positions 𝑙1, 𝑙2, 𝑙3, and 𝑙4.

𝑖 𝑙𝑖 𝑑(𝑙𝑖)

1 2 1
2 1 4
3 1 3
4 2 2

Table 10.1: Measurements of deflection 𝑑(𝑙𝑖) at four positions 𝑙1, 𝑙2, 𝑙3, and 𝑙4 at the bridge deck.

Question 3 A bridge deck is supported by pillars at points A and B. By its own weight, the
deck in between will bend (deflect) as shown in Figure 10.5. A vertical crosssection along
the bridge deck centerline, i.e. coordinateaxis 𝑙, is shown. The deflection 𝑑 is modeled as a
quadratic function of coordinate 𝑙: 𝑑(𝑙) = 𝑥1𝑙2 + 𝑥2𝑙 + 𝑥3, with unknown coefficients 𝑥1, 𝑥2,
and 𝑥3. Using leveling, the downward deflection 𝑑 (downward is positive) has been observed
at four positions along the deck. The measurements are listed in Table 10.1. Set up the model
of observation equations 𝐸(𝑦) = 𝐴𝑥, for the four observations, for the goal of estimating the
unknown coefficients 𝑥1, 𝑥2, and 𝑥3.

Answer 3 We have four observation equations, according to the given quadratic function
𝑑(𝑙) = 𝑥1𝑙2 + 𝑥2𝑙 + 𝑥3. Hence,

𝐸⎛

⎝

𝑑(𝑙1)
𝑑(𝑙2)
𝑑(𝑙3)
𝑑(𝑙4)

⎞

⎠

= ⎛

⎝

𝑙21 𝑙1 1
𝑙22 𝑙2 1
𝑙23 𝑙3 1
𝑙24 𝑙4 1

⎞

⎠

(
𝑥1
𝑥2
𝑥3
) = ⎛

⎝

4 −2 1
1 −1 1
1 1 1
4 2 1

⎞

⎠

(
𝑥1
𝑥2
𝑥3
)
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with observation vector 𝑦 as

⎛

⎝

1
4
3
2

⎞

⎠

The horizontal coordinate 𝑙 is assumed to be known exactly in this exercise.

Question 4With the problem of the bridge deck in the previous question, one can assume
that maximum deflection occurs (naturally) exactly in the middle, and we conveniently choose
the origin of the 𝑙coordinate axis in the middle (𝑙 = 0), in between the two support points A
and B. Present the accordingly simplified model of observation equations.

Answer 4 To find the extremum of the deflection function 𝑑(𝑙), we set the first derivative
to zero: 𝜕𝑑(𝑙)𝜕𝑙 = 2𝑙𝑥1+𝑥2 = 0, which has to occur for 𝑙 = 0, hence 𝑥2 = 0. With the later found
value for 𝑥1 one can verify that this extremum indeed is a maximum (with positive deflection
downward). Now, the second column of the Amatrix together with the given zero value for 𝑥2
can be brought to the lefthand side of the equation. But, as 𝑥2 = 0, this cancels all together.
The resulting model of observation equations reads

𝐸⎛

⎝

𝑑(𝑙1)
𝑑(𝑙2)
𝑑(𝑙3)
𝑑(𝑙4)

⎞

⎠

= ⎛

⎝

4 1
1 1
1 1
4 1

⎞

⎠

( 𝑥1𝑥3
)

Matrix product 𝐴𝑇𝐴 is found as

𝐴𝑇𝐴 = ( 34 10
10 4 )

hence

(𝐴𝑇𝐴)−1 = 1
36 (

4 −10
−10 34 )

and the leastsquares estimates, according to (8.4), are found as

( �̂�1�̂�3
) = 1

6 (
1 −1 −1 1
−1 4 4 −1 )

⎛

⎝

𝑦1
𝑦2
𝑦3
𝑦4

⎞

⎠

and we obtain �̂�1 = −
2
3 and �̂�3 =

25
6 .





11
Interpolation

In this chapter we cover the subject of interpolation. After the introduction we cover de
terministic interpolation, and next stochastic interpolation, thereby focussing in particular on
Kriging.

11.1. Introduction
Interpolation is about determining the value of an attribute, like height or water depth, at
a certain position within a spatial domain, from a set of observations of that attribute in
that domain. For instance, with a hydrographic survey, by means of echo sounding, the
attribute water depth is measured, and the measurements 𝑦1, … , 𝑦𝑚 are taken at specific
discrete positions, for instance while the vessel is sailing along a regular pattern (forth and
back) over the waterway. Next, one is interested to know the water depth 𝑧 at another
position, where no specific measurement is available, see Figure 11.1.

One of the most common techniques is linear interpolation. The value of the attribute 𝑧0
at position 𝑝0 (position coordinate vector) is estimated as a linear combination

�̂�0 = 𝑤1𝑦1 +⋯+𝑤𝑚𝑦𝑚 (11.1)

of observations 𝑦1, … , 𝑦𝑚 at positions 𝑝1, … , 𝑝𝑚 in the neighborhood of 𝑝0. The coefficients 𝑤1
to 𝑤𝑚 indicate the weights given to each of the observations. By stacking the observations
in vector 𝑦 = (𝑦1, … , 𝑦𝑚)𝑇, and the weights in vector 𝑤 = (𝑤1, … , 𝑤𝑚)𝑇, Eq. (11.1) can be
summarized into

�̂�0 = 𝑤𝑇𝑦 (11.2)

Linear interpolation is not to be confused with the interpolated values being a linear function of
time or position; this may be the case, cf. Figure 11.10, but generally it is not, cf. Figure 11.6
at right and Figure 11.7 at left.

Rudimentary interpolation could imply to copy just the nearest observation, in this case
𝑤𝑖 = 1, with 𝑝𝑖 being the observation position closest to 𝑝0, and all other 𝑤𝑗≠𝑖 = 0. This is
referred to as nearest neighbor interpolation.

Another simple alternative is to take the mean of all available observations in the domain.
Then we have 𝑤1 = 𝑤2 = ⋯ = 𝑤𝑚 =

1
𝑚 .

Figure 11.2 shows two interpolation configurations in a twodimensional spatial domain.
Observation positions are given in blue, and the desired interpolation position is indicated in
red. In the configuration on the left (gridded dataset), many observations are available in all
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Figure 11.1: The water depth 𝑧0 at position 𝑝0 has not been measured. The water depth 𝑧0 is interpolated, based
on measurements of water depth 𝑦1, … , 𝑦𝑚 at positions 𝑝1 through 𝑝𝑚. Note that the measurements — the small
open dots — are not exactly on the sea floor, as they are subject to (small) measurement errors. Generally, the
resulting estimate or prediction �̂�0 (interpolated value) will not lie exactly on the sea floor either, though hopefully
be close to it.

Figure 11.2: Observations of the attribute in a regular grid, in a twodimensional domain, in blue (left), and at
arbitrary positions (right). The intended interpolation position 𝑝0 is indicated by the red dot.

directions in a regular way around the desired interpolation position, while in the configuration
on the right, observations are sparse and irregular — in some directions observations are
available, whereas not in other directions, while in addition, some observations have their
positions almost coinciding. In the first case, a simple but fast method will probably work
well, while in the latter case, one should be more careful on how the method handles clusters
of data and directional variability.

If the desired position (red dot) is within the convex hull of surrounding observation posi
tions, then one speaks of interpolation, otherwise of extrapolation. Two classes of interpolation
methods are distinguished here. In deterministic methods, the uncertainty of, and correlation
between observations is ignored, while stochastic methods do take this uncertainty and cor
relation into account. The next two sections present the basics of deterministic interpolation
and stochastic interpolation.

11.2. Deterministic interpolation
Deterministic interpolation methods are distinguished by the way in which they distribute
weights 𝑤𝑖 with 𝑖 = 1,… ,𝑚 over the available observations (with 𝑤𝑖 ≥ 0).

As mentioned before, two very basic ways of interpolation are nearest neighbor inter
polation, in which all weight is given to the closest observation, and averaging all available
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observations by distributing the weights equally over all observations. Most common, slightly
more advanced, methods are inverse distance interpolation and triangular interpolation.

11.2.1. Inverse distance interpolation
It is intuitively appealing that observations close by (in the spatial domain) show large similarity
with the attribute at the target interpolation position. The observations are weighted by their
spatial distance to the interpolation position. Let 𝑑𝑖 be the distance between points 𝑝𝑖 and 𝑝0,
with 𝑖 = 1,… ,𝑚. The inverse distance interpolation of (for instance) the height at position 𝑝0
is given by

�̂�0 =
1

∑𝑚𝑖=1
1
𝑑𝑖

( 1𝑑1
𝑦1 +⋯+

1
𝑑𝑚
𝑦𝑚) (11.3)

based on the height observations 𝑦1, … , 𝑦𝑚. Therefore, the weight given to the 𝑗th observation
equals

𝑤𝑗 =
1
𝑑𝑗

∑𝑚𝑖=1
1
𝑑𝑖

(11.4)

This approach to interpolation is also referred to as Inverse Distance Weighting (IDW). Note
that the sum of all weights equals one.

When one interpolates specifically for one of the given data points, i.e. position 𝑝0 coincides
with observation point 𝑝𝑗: 𝑝0 = 𝑝𝑗, one will get the attribute value of that data point. In this
limiting case 𝑑𝑗 ↓ 0 and 𝑤𝑗 ↑ 1, and indeed �̂�0 = 𝑦𝑗, and the observed height 𝑦𝑗 at position 𝑝𝑗
is returned as interpolated depth or height.

More or less weight to close by observations can be given by incorporating a power 𝑝 in
Eq. (11.3), respectively by power 𝑝 > 1 (more) and 𝑝 < 1 (less). Inverse distance interpolation
of power 𝑝 reads:

�̂�0 =
1

∑𝑚𝑖=1
1
𝑑𝑝𝑖

( 1𝑑𝑝1
𝑦1 +⋯+

1
𝑑𝑝𝑚
𝑦𝑚) (11.5)

Inverse distance interpolation works well for dense and regularly space data.
Often only observations within some threshold distance 𝑅 to the interpolation location are

incorporated (𝑑𝑖 ≤ 𝑅); the neighborhood of position 𝑝0 is restricted to those positions within
a distance of 𝑅.

11.2.2. Triangular interpolation
Rather than using a single nearby observation for interpolation, as done with nearest neighbor
interpolation, one may want to use the three observations, which are, in a twodimensional
spatial domain, directly surrounding the target interpolation position 𝑝0. Triangular interpo
lation is often used for dense data, like airborne laser scanning data (for creating 3D terrain
models for instance, cf. Chapter 22). This method consists of two steps. Assume 𝑚 height
observations 𝑦1, … , 𝑦𝑚 are available at positions 𝑝1, … , 𝑝𝑚, with 𝑝1 = ((𝑥1)1, (𝑥2)1), … , 𝑝𝑚 =
((𝑥1)𝑚, (𝑥2)𝑚), and that we want to obtain a height estimate at a 2D position 𝑝0.

The first step consists of determining the Delaunay triangulation of the observation posi
tions 𝑝1, … , 𝑝𝑚, see Figure 11.3 on the left.

In the second step one finds the (smallest) triangle consisting of three nodes (positions
𝑝𝑖, 𝑝𝑗, and 𝑝𝑘) which contains 𝑝0, see Figure 11.3 on the right. Only the three observations
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Figure 11.3: Delaunay triangulation in black of a set of observation points/positions (black dots) in twodimensional
ℝ2, also referred to as Triangulated Irregular Network (TIN), and Voronoi diagram in yellow, on the left. In
triangular interpolation the weights 𝑤𝑖, 𝑤𝑗 and 𝑤𝑘 of the attribute at positions 𝑝𝑖, 𝑝𝑗 and 𝑝𝑘 are proportional to
their relative distance to the center point 𝑝0.

𝑦𝑖 , 𝑦𝑗 , 𝑦𝑘 at positions 𝑝𝑖, 𝑝𝑗, and 𝑝𝑘 are used. All other observations get a weight equal to
zero for interpolation at 𝑝0, hence 𝑤𝑙 = 0 for 𝑙 ≠ 𝑖, 𝑗, 𝑘. Positive weights for 𝑦𝑖, 𝑦𝑗 and 𝑦𝑘 are
obtained from the triangular weight equation

�̂�0 =
𝐴0𝑗𝑘
𝐴𝑖𝑗𝑘

𝑦𝑖 +
𝐴𝑖0𝑘
𝐴𝑖𝑗𝑘

𝑦𝑗 +
𝐴𝑖𝑗0
𝐴𝑖𝑗𝑘

𝑦𝑘 = 𝑤𝑖𝑦𝑖 +𝑤𝑗𝑦𝑗 +𝑤𝑘𝑦𝑘 (11.6)

where 𝐴𝑖𝑗𝑘 denotes the area of the triangle with vertices 𝑖, 𝑗, 𝑘, and noting that 𝐴0𝑗𝑘 +𝐴𝑖0𝑘 +
𝐴𝑖𝑗0 = 𝐴𝑖𝑗𝑘. So, the closer 𝑝0 is to vertex 𝑗, the larger the triangle on the other side (𝐴0𝑖𝑘) and
the more weight 𝑦𝑗 gets. Ultimately, triangular interpolation yields �̂�0 = 𝑦𝑗, with 𝑤𝑗 = 1 (and
𝑤𝑖 = 𝑤𝑘 = 0) when interpolation position 𝑝0 coincides with one of the observation points, i.e.
𝑝0 = 𝑝𝑗.

An example of a Delaunay triangulation is given in black in Figure 11.3 (on the left), while
in yellow its dual structure, the Voronoi diagram, is given. To create the Voronoi diagram, one
starts from the perpendicular bisectors between any two positions (black dots), and uses these
to construct the smallest possible convex polygon around each position (practically spoken,
the smallest possible area (cell) around each position). This yields the Voronoi cells in yellow,
Figure 11.3 (on the left). Triangular interpolation is relatively fast, as efficient algorithms exist
for creating a Delaunay triangulation, cf. [29].

Once the Delaunay triangulation has been done for the full set of observation positions,
typically irregularly distributed, triangular interpolation is often used to create a regular inter
polation grid; then the attribute is determined (interpolated) at each grid point.

11.3. Stochastic interpolation [*]
Though deterministic interpolation is intuitively appealing at first sight, there are a few prob
lems associated.

In stochastic interpolation we consider the spatial variation of the attribute in a statistical
way. The attribute tobeinterpolated, which is subject to variations, is modeled as a random
function 𝑧(𝑝), which depends on position 𝑝. As an example we can assume that the seafloor is
flat (deterministic trend), but quite naturally, small variations may occur from place to place,
see Figure 11.4. These random variations are referred to as the signal in the quantity of
interest, in this case the seafloor depth; the seafloor naturally goes up and down, though
smoothly. Considering the observation positions, the random function 𝑧(𝑝) actually consists
of a set of random variables 𝑧(𝑝1), … , 𝑧(𝑝𝑚). We note that examples of spatial interpolation
are shown here, but the approach presented in this section equally applies to temporal inter
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Figure 11.4: The tobeinterpolated attribute 𝑧 (e.g. the seafloor depth) is modeled (simply) as a trend, in this
case the flat dashed horizontal line (average seafloorlevel), supplemented by a small variation signal, the solid
line. The signal behaves smoothly in the spatial domain, there are no sudden changes or jumps. The trend and
signal together represent the actual seafloor depth 𝑧. By including a random signal in the model, the interpolation
can accomodate small local variations of the attribute (e.g. the depth) with respect to the trend. Water depth
is measured with respect to the thin line on top, which represents the reference or zero height/depth level (for
instance average sea level).

Figure 11.5: The result of interpolation: water depth �̂�0. The small open dots indicate water depth observations
𝑦1, … , 𝑦𝑚. Because of measurement errors, they do not perfectly coincide with the actual seafloor. The actual sea
floor is not known to us  we just got the observations at positions 𝑝1, … , 𝑝𝑚. Interpolation is about determining
the water depth at another location 𝑝0, and do this in a best way. The interpolated water depth �̂�0, indicated by
the asterisk, is hopefully close to the actual seafloor.

polation (with the attribute, for instance temperature, as a function of time). Mind that in this
chapter position 𝑝 is deterministic; the position coordinates in 𝑝 are independent variables,
just like time 𝑡 in the example of Section 10.2.

Secondly, as we know already from Chapter 8, observables 𝑦
1
, … , 𝑦

𝑚
are random variables,

and the measurement uncertainty, or noise, should be taken into account in the interpolation,
like we did with parameter estimation. For optimal interpolation results, the measurement
uncertainty should be reflected in the weights in (11.1).

Finally one should also propagate the quality of the observables into measures of quality
of the interpolation result, taking into account also the natural variability of the signal, so that
one is able, to not only present the result, but also in a realistic way to evaluate its quality
(uncertainty). What counts in the end is, how far off the interpolated value is from the actual
seafloor depth. The result of interpolation, estimate �̂�0 at position 𝑝0 is shown in Figure 11.5.
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11.3.1. Kriging
A class of methods that takes care of the above issues is called Kriging. Kriging is a common
technique in geology and environmental sciences, and fits in the theory of linear prediction
developed in (geo)statistics and geodesy.

Kriging takes as input, the observation values, and also takes into account stochastic prop
erties of the attribute and the observable. In this section we restrict ourselves to working with
the first two central moments of a random variables’ distribution: the mean and the variance.

The spatial variation of the attribute with respect to the trend is captured by the signal,
denoted by 𝑠, and it depends on the position 𝑝, i.e. 𝑠(𝑝). The signal is assumed here to have
zero mean, i.e. on average, the variations of the seafloor with respect to the assumed flat plane
equal zero. The variation is described by a covariance function, cf. Figure 11.7 on the right; this
implies that signal values at two nearby positions are largely correlated (dependent), whereas
signal values of two positions far away from each other will have little, or no ‘dependence’.
In this way physical smoothness of the variation is translated into statistical correlation. The
covariance is assumed to depend on the separation vector between two positions, and in
practice often only on its norm, hence the Euclidean distance between two positions, and not
on the particular positions themselves.

Secondly we take into account the uncertainty in the observables 𝑦. As one can see in
Figure 11.5, random deviations in the observations from the trend consist of firstly, the signal
variation (the solid line hoovers around the dashed line), and secondly, the measurement
uncertainty (the open dots are not exactly on the solid line). With respect to model (8.3) in
Chapter 8, the random signal 𝑠 is added, and we have

𝑦 = 𝐴𝑥 + 𝑠 + 𝑒 (11.7)

with vector 𝑦 holding the observations 𝑦1, … , 𝑦𝑚 at positions 𝑝1, … , 𝑝𝑚, with 𝐴𝑥 the socalled
trend, vector 𝑠 the signal at positions 𝑝1, … , 𝑝𝑚, i.e. 𝑠 = (𝑠(𝑝1), … , 𝑠(𝑝𝑚))𝑇, and vector 𝑒 the
measurement errors 𝑒 = (𝑒1, … , 𝑒𝑚)𝑇. The full 𝑚x𝑚 variance matrix 𝑄𝑦𝑦 of all observables,
cf. (7.5), and Section 8.3.4, takes both effects into account (error in the measurement system
and signal in the observed attribute). It starts from the variance matrix 𝑄𝑦𝑦 in Chapter 8,
representing the measurement noise, and adding now the𝑚x𝑚 variance matrix 𝑄𝑠𝑠 of vector 𝑠,
constructed from the covariance function, with elements 𝜎𝑠(𝑝𝑖)𝑠(𝑝𝑗) for 𝑖 = 1,… ,𝑚 and 𝑗 =
1,… ,𝑚. Positions 𝑝𝑖 and 𝑝𝑗 are separated by a certain distance 𝑑𝑖𝑗, and given this distance,
matrix entry 𝜎𝑠(𝑝𝑖)𝑠(𝑝𝑗) is simply read from Figure 11.7, on the right. In shorthand notation
we have 𝑄𝑦𝑦 ∶= 𝑄𝑦𝑦 +𝑄𝑠𝑠 (assuming that measurement noise and signal are not correlated).
In many applications of Ordinary Kriging, the measurement noise — when compared to the
signal variation — can often be, or is often neglected. In that case we simply have 𝑄𝑦𝑦 ∶= 𝑄𝑠𝑠.

In order to derive the best possible interpolator, the interpolation error is defined as ̂𝜖 =
𝑧0 − �̂�0, the difference between the actual waterdepth 𝑧0 at position 𝑝0 and the interpolated
value �̂�0. We start from the Mean Squared Error (MSE), cf. Section 6.6 and impose conditions
on the solution, like that the interpolation is a linear combination of the observations, cf.
Eq. (11.2), and that the interpolation is unbiased, thus 𝐸(�̂�) = 𝐸(𝑧), and this leads to an
expression for the error variance of the interpolator. Minimizing the error variance (implying
minimum MSE) results in a solution that in practice is obtained by solving a system of linear
equations. Kriging not only provides a numerical interpolation result that is optimal in the
sense of minimum error variance 𝜎2�̂� (least uncertainty), but also provides this variance as a
measure of the uncertainty of the interpolation result.

Finally we note that in this chapter we always work with a given covariance function. In
practice, the covariance function will not be known, and has to be estimated. In particular
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selecting an appropriate type or shape of covariance function is important. These subjects are
beyond the scope of this book.

11.3.2. Ordinary Kriging
The most common way of Kriging is socalled Ordinary Kriging. Ordinary Kriging assumes, first,
that the attribute under consideration has a constant mean over the entire spatial domain (i.e.
the seafloor globally is assumed to be flat and level, as in Figure 11.4), but the mean water
depth is unknown. The attribute 𝑧 at position 𝑝𝑖 equals the unknown trend 𝑥, plus the signal 𝑠
at that position, cf. Figure 11.4

𝑧(𝑝𝑖) = 𝑥 + 𝑠(𝑝𝑖) (11.8)

Stating that the attribute has a constant unknown mean over the entire spatial domain implies
that matrix 𝐴 in (11.7) reduces to 𝐴 = 𝑙, with 𝑙 a vector of all ones, i.e. 𝑙 = (1, … , 1)𝑇, of
length 𝑚.

Secondly, it assumes that the covariance is the same over the entire spatial domain under
consideration (typically a decaying function of distance, as the example in Figure 11.7 on the
right).

The above assumptions, in combination with requirements on unbiasedness and linearity
as above, see Appendix B.7, lead to the following Ordinary Kriging system:

( 𝑄𝑦𝑦 𝑙
𝑙𝑇 0 )(

𝑤
𝜈 ) = (

𝑄𝑦𝑧0
1 ) (11.9)

The last row of this matrixvector system, 𝑙𝑇𝑤 = 1, ensures that the sum of all weights equals
one (and represents the unbiasedness condition). Matrix 𝑄𝑦𝑦 is the variance matrix of 𝑦 in
(11.7). Vector 𝑄𝑦𝑧0 contains the covariances 𝜎𝑠(𝑝𝑖)𝑠(𝑝0) between the signal at observation
position 𝑝𝑖 and the signal at interpolation position 𝑝0, and this for 𝑖 = 1,… ,𝑚; the covariances
depend, according to the covariance function, on the distances 𝑑𝑖0.

Eq. (11.9) is a square system with𝑚+1 unknowns, namely𝑤 = (𝑤1, … , 𝑤𝑚)𝑇 and Lagrange
multiplier 𝜆, with 𝜈 = 𝜆

2 , cf. Appendix B.7, and can be solved by inverting the (𝑚+1)x(𝑚+1)
matrix, resulting in

( 𝑤𝜈 ) = (
𝑄𝑦𝑦 𝑙
𝑙𝑇 0 )

−1
( 𝑄𝑦𝑧01 ) (11.10)

Finally, once vector 𝑤 has been obtained, the interpolated value is computed with (11.2).
Ordinary Kriging is based on Best Linear Unbiased Prediction (BLUP), similar to BLUE in Sec
tion 8.3.4. With the weights in 𝑤 resulting from the above equation, it can be shown, cf.
Appendix B.7, that the interpolator (11.2) can be rewritten into

�̂�0 = �̂� + 𝑄𝑧0𝑦𝑄
−1
𝑦𝑦(𝑦 − 𝑙�̂�) (11.11)

with estimator �̂� as

�̂� = (𝑙𝑇𝑄−1𝑦𝑦 𝑙)−1𝑙𝑇𝑄−1𝑦𝑦𝑦 (11.12)

similar to (8.6) with 𝐴 = 𝑙, and 𝑄𝑦𝑦 the variance matrix of 𝑦 in (11.7). The estimator �̂� is also
a linear function of 𝑦. Matrix 𝑄𝑧0𝑦 is a rowvector, containing the covariances 𝜎𝑠(𝑝0)𝑠(𝑝𝑖).

In Figure 11.6 we show an example of Ordinary Kriging. On the left 𝑚 = 5 observations of
terrain height are shown in a twodimensional spatial domain. The graph on the right shows
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Figure 11.6: Example of Ordinary Kriging. On the left, five observations of attribute height, indicated by asterisks,
in a twodimensional spatial domain (𝑥1, 𝑥2). The observed heights are 0, 2, 13, 11, 12, at positions (2

1
2 , 2

1
2 ),

(3, 12 ), (1, 1), (1, 1
1
2 ), (1

1
2 , 1

1
2 ). On the right the interpolated terrain model  two of the observations are above the

interpolated surface, and three are below (and thereby not visible). The used covariance function was 𝜎𝑠(𝑝𝑖)𝑠(𝑝𝑗) =
𝑎𝑒−𝑏𝑑2𝑖𝑗 , with 𝑎 = 1 and 𝑏 = 1

2 , and 𝑑𝑖𝑗 the Euclidean distance between positions 𝑝𝑖 and 𝑝𝑗. The measurement
noise 𝑒 was set to have a variance of 𝜎2𝑒 =

1
10 .

the interpolation result, computed for a 0.1×0.1 grid of positions. Using (11.12), the trend 𝑥
(mean terrain height) is estimated as �̂� = 4.7. This is quite remarkable, as the mean of the
five observations is 7.6. This is caused by the fact that variance matrix 𝑄𝑦𝑦 of 𝑦 in (11.7)
now contains measurement noise and signal noise. The last three observations are closely
together (clustered in the spatial domain) and hence, according to a covariance function, like
in Figure 11.7 on the right, highly correlated (dependent). In computing the mean height for
the full spatial domain, they therefore ‘count for’ one observation (their mean equals 12, and
counts effectively as one observation, rather than three).

With universal Kriging one can use a general polynomial trend model (for instance a sloped
line or plane), rather than just a constant, as with Ordinary Kriging.

In the next subsection we cover a variant of Kriging, with an additional restriction.

11.3.3. Simple Kriging
Simple Kriging, as the name suggests, implies a further simplification of Ordinary Kriging.
Instead of an unknown trend, it is assumed that the mean value of the attribute is known.
Parameter 𝑥 in (11.8) is known.

Simple Kriging will be covered by means of an example. The temperature in a room is
kept constant, at a preset, known (scalar) value 𝑥. If this were all available information,
predicting the temperature would simply be �̂�0 = 𝑥 (for any time 𝑡0); it equals the known
mean, obviously. In practice however, small variations of temperature occur over time. The
random signal 𝑠 now represents the deviations from the nominal temperature 𝑥. This signal
has a constant, zero mean, as we had with (11.8) as well.

The temperature in the room is observed at regular time instants 𝑡1, … , 𝑡𝑚, and the obser
vations are denoted as 𝑦1, … , 𝑦𝑚. Compared to the assumed variation in the temperature, the
measurement uncertainty is negligible in this example (though measurement noise can also
be accomodated with Simple Kriging, similar as with Ordinary Kriging).

Now we would like to interpolate the temperature to some time instant 𝑡0 in between the
observation time instants, based on all available information, i.e. the known mean 𝑥, and the
observations in vector 𝑦 = (𝑦1, … , 𝑦𝑚)𝑇. The result reads

�̂�0 = 𝑥 + 𝑤
𝑇(𝑦 − 𝑙𝑥) (11.13)

where 𝑙 is again a vector with all ones, 𝑙 = (1,… , 1)𝑇, and 𝑤 = 𝑄−1𝑦𝑦𝑄𝑦𝑧0 , similar to (11.10),
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Figure 11.7: Example of Simple Kriging. On the left, six observations (red circles) of attribute temperature (at
time instants 3, 6, 9, 12, 15 and 18), and the interpolation result (blue line). On the right the covariance function
of the signal 𝜎𝑠(𝑡𝑖)𝑠(𝑡𝑗) = 𝑎𝑒−𝑏|𝑡𝑗−𝑡𝑖|

2
with 𝑎 = 1 and 𝑏 = 1

3 ; the amount of covariance between the signal at two
positions or instants depends on their distance, shown along the horizontal axis, i.e. the covariance depends on
how far the positions or instants are apart.

though omitting the last row (this result is given here without proof/derivation).
This equation can — as a side note — be shown to deliver the interpolation value, as a

function of both the known mean and the observations, through rewriting it as

�̂�0 = (1 − 𝑤
𝑇𝑙)𝑥 + 𝑤𝑇𝑦 = (1 −

𝑚

∑
𝑖=1
𝑤𝑖)𝑥 +

𝑚

∑
𝑖=1
𝑤𝑖𝑦𝑖

Substituting the expression for weightvector 𝑤 in (11.13) yields

�̂�0 = 𝑥 + 𝑄𝑧0𝑦𝑄
−1
𝑦𝑦(𝑦 − 𝑙𝑥) (11.14)

This result is based on Best Linear Prediction (BLP). The result actually looks very similar
to (11.11), but in (11.14) the known mean 𝑥 is used, whereas estimator �̂� is used in (11.11).

Figure 11.7 shows an example of Simple Kriging, specifically the temperature as a function
of time 𝑡. The known mean equals 𝑥 = 20 and is shown by the dashed line. The actual
observations are shown by red circles, 𝑦 = (19, 18, 19, 20, 22, 21)𝑇. The blue line presents
the interpolation result. One can see that in between observations, the interpolation has the
tendency of going back to the known mean (dashed line) — the interpolation is a combination
of the known mean and the observations cf. (11.13).

The graph on the right shows the covariance function of random signal 𝑠. The amount of
covariance between the signal at two positions 𝑝𝑖 and 𝑝𝑗 depends on the mutual distance 𝑑𝑖𝑗
between them, or, in this example, the difference in time between instants 𝑡𝑖 and 𝑡𝑗: 𝑑𝑖𝑗 = |𝑡𝑗−
𝑡𝑖|. Typically, an exponentially decaying function is used, as 𝜎𝑠(𝑝𝑖)𝑠(𝑝𝑗) = 𝑎𝑒

−𝑏𝑑2𝑖𝑗 . Parameter 𝑏
governs the width of the covariance function; a larger value for 𝑏 yields a function which
is more narrow, and a smaller value yields a wider covariance function. The width of the
covariance function measures the smoothness of the signal; a wide function corresponds to
a smooth signal, a narrow function allows for rapid variations. Parameter 𝑎 represents the
signal variance, i.e. 𝜎𝑠(𝑝𝑖)𝑠(𝑝𝑖) = 𝑎, and equals 𝜎2𝑧 ; it is a measure of the magnitude of the
signal variations with respect to the trend.

The interpolation result in Figure 11.7 on the left, is computed using Eq. (11.14). The
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Figure 11.8: Example of Simple Kriging: interpolation error standard deviation 𝜎�̂� as a function of the interpolation
time instant.

6x6variance matrix 𝑄𝑦𝑦 reads

𝑄𝑦𝑦 =
⎛
⎜⎜⎜

⎝

1 0.05
0.05 1 0.05

0.05 1 0.05
0.05 1 0.05

0.05 1 0.05
0.05 1

⎞
⎟⎟⎟

⎠

For the interpolation �̂�0 at time instant 𝑡0 = 4, matrix 𝑄𝑧0𝑦 reads

𝑄𝑧0𝑦 = ( 0.72 0.26 0 0 0 0 )

which has only two nonzero values. In line with the covariance function in Figure 11.7 on the
right and Eq. (11.14), interpolation at 𝑡0 = 4 depends on the known mean, and on the two
neighboring observations, at 𝑡𝑖 = 3 we have |𝑡𝑖 − 𝑡0| = 1, and at 𝑡𝑖 = 6 we have |𝑡𝑖 − 𝑡0| = 2.
The interpolated value at 𝑡0 = 4 becomes �̂�0 = 18.85, well in between the two neighboring
observations of 19 at 𝑡 = 3, and 18 at 𝑡 = 6.

Figure 11.8 shows the interpolation error standard deviation 𝜎�̂� from (B.5), as a function
of the interpolation position, in this case, interpolation time instant. At 𝑡0 = 4 the standard
deviation reads 𝜎�̂�(𝑡0=4) = 0.66. Note that the interpolated signal passes exactly through the
observations (red circles), cf. Figure 11.7. At the observation positions (time instants), the
error standard deviation is zero cf. Figure 11.8, as at these positions there is no uncertainty on
the interpolated height/depth (as actually no interpolation is needed at these positions). When
there is measurement noise present, the interpolated signal will not pass exactly through the
observations. In between observation instants, the interpolation error standard deviation will
increase. The interpolation error standard deviation as shown in Figure 11.8 initially increases
with increasing distance to the observation positions, but levels off at a maximum value at
the socalled range distance 𝜎�̂� = √𝑎 (the level when there would be no observation), the
distance beyond which there is no correlation anymore between observables, according to the
covariance function used. For more information see e.g. [30].

11.3.4. Parametric trend interpolation
In the absence of random signal 𝑠 in (11.7), we have 𝑦 = 𝐴𝑥 + 𝑒 and we are basically back at
the parameter estimation model of Chapter 8. We suppose that there is no spatial variation of
the attribute with respect to the trend. In that sense a onedimensional temporal interpolation
was already presented in Section 10.2. The trend was modeled by a straight line, described by
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Figure 11.9: Regular measurement layout for bilinear spatial interpolation, with measurements of height at the
four corners (𝑝1, 𝑝2, 𝑝3, 𝑝4).

two parameters, namely 𝑥(𝑡0) and �̇� (𝑛=2); a polynomial of degree 1. With estimates �̂�(𝑡0)
and ̂�̇� one can estimate the position at any time 𝑡𝑗 as

�̂�(𝑡𝑗) = ( 1 (𝑡𝑗 − 𝑡0) ) (
�̂�(𝑡0)
̂�̇� )

At the end of that section even a quadratic model was put forward with 𝑥(𝑡0), �̇� and �̈� as
unknown parameters (𝑛=3). In practice typically a polynomial of low degree, (𝑛−1), is used,
with 𝑛 ≪ 𝑚.

As an example we briefly consider bilinear spatial interpolation. The attribute height 𝑧
depends on the position coordinates 𝑝 = (𝑥1, 𝑥2) through four coefficients 𝑐00, 𝑐10, 𝑐01 and
𝑐11 as follows

𝑧 = 𝑐00 + 𝑥1𝑐10 + 𝑥2𝑐01 + 𝑥1𝑥2𝑐11
So, for the interpolated height 𝑧0 at 𝑝0 we have

𝑧0 = 𝑐00 + (𝑥1)0𝑐10 + (𝑥2)0𝑐01 + (𝑥1)0(𝑥2)0𝑐11 (11.15)

and the four coefficients follow from the heights 𝑦1, 𝑦2, 𝑦3, 𝑦4 observed at four positions 𝑝1,
𝑝2, 𝑝3, 𝑝4. Following the approach of Chapter 8, model 𝑦 = 𝐴𝑥+𝑒, or 𝐸(𝑦) = 𝐴𝑥 with 𝐸(𝑒) = 0
becomes

𝐸
⎛
⎜

⎝

𝑦
1
𝑦
2
𝑦
3
𝑦
4

⎞
⎟

⎠

= ⎛

⎝

1 (𝑥1)1 (𝑥2)1 (𝑥1)1(𝑥2)1
1 (𝑥1)1 (𝑥2)2 (𝑥1)1(𝑥2)2
1 (𝑥1)3 (𝑥2)1 (𝑥1)3(𝑥2)1
1 (𝑥1)3 (𝑥2)2 (𝑥1)3(𝑥2)2

⎞

⎠⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
𝐴

⎛

⎝

𝑐00
𝑐10
𝑐01
𝑐11

⎞

⎠

where we conveniently took a regular measurement layout as shown in Figure 11.9, such
that e.g. (𝑥1)2 = (𝑥1)1. In this case, the model has 𝑚 = 𝑛 = 4 observations and unknown
parameters, and hence the design matrix 𝐴 can be just inverted to result into the estimates
for the unknown coefficients

⎛

⎝

�̂�00
�̂�10
�̂�01
�̂�11

⎞

⎠

= 1
((𝑥1)3 − (𝑥1)1)((𝑥2)2 − (𝑥2)1)

⎛

⎝

(𝑥1)3(𝑥2)2 −(𝑥1)3(𝑥2)1 −(𝑥1)1(𝑥2)2 (𝑥1)1(𝑥2)1
−(𝑥2)2 (𝑥2)1 (𝑥2)2 −(𝑥2)1
−(𝑥1)3 (𝑥1)3 (𝑥1)1 −(𝑥1)1
1 −1 −1 1

⎞

⎠
and with these coefficients interpolated height 𝑧0 can be obtained through (11.15). Note that
the above model is not about fitting plane to the four observed heights 𝑦1, 𝑦2, 𝑦3, 𝑦4; for doing
that, without redundancy, one would need only three heights.
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Figure 11.10: Piecewise linear interpolation of observations in the example of Figure 11.7, with Question 1.

11.4. Exercises and worked examples
This section presents a derivationexercise and a simple problem with a worked answer on
interpolation.

Question 1 Piecewise linear interpolation of an attribute, in a onedimensional spatial, or
temporal domain implies just connecting two succesive observations by a straight line, see
Figure 11.10. Start from Eq. (11.3) for inverse distance interpolation, and restrict it to 𝑚 = 2,
for instance interpolating 𝑧 for position 𝑝0 with 𝑝0 ∈ [𝑝1, 𝑝2], using only 𝑦1 and 𝑦2 in the
interpolation. Show that in this case one obtains

�̂�0 =
𝑝2 − 𝑝0
𝑝2 − 𝑝1

𝑦1 +
𝑝0 − 𝑝1
𝑝2 − 𝑝1

𝑦2 = 𝑦1 +
𝑝0 − 𝑝1
𝑝2 − 𝑝1

(𝑦2 − 𝑦1)

Answer 1 Restricting 𝑚 = 2 and using solely 𝑦1 and 𝑦2 in (11.3) yields

�̂�0 =
1

1
𝑑10

+ 1
𝑑20

( 1𝑑10
𝑦1 +

1
𝑑20

𝑦2)

with 𝑑10 the distance between 𝑝1 and 𝑝0, and 𝑑20 the distance between 𝑝2 and 𝑝0. This can
be rewritten as

�̂�0 =
𝑑10𝑑20
𝑑10 + 𝑑20

( 1𝑑10
𝑦1 +

1
𝑑20

𝑦2) =
𝑑20

𝑑10 + 𝑑20
𝑦1 +

𝑑10
𝑑10 + 𝑑20

𝑦2

which shows the given equation, when the horizontal coordinate 𝑝 is introduced (e.g. 𝑑20 =
𝑝2 − 𝑝0).

Question 2 [*] Two observations of terrain height are given: 𝑦1 = 3 at position 𝑝1 = 1,
and 𝑦2 = 4 at position 𝑝2 = 3, see Figure 11.11 on the left. The measurement noise of the
observables has a variance of 𝜎2𝑦1 = 𝜎2𝑦2 =

1
2 , and is uncorrelated across the observables. In

this spatial domain from 𝑝 = 0 to 𝑝 = 5, the terrain can be assumed flat, though the mean
terrainheight is unknown. On the right in Figure 11.11 the covariance function is given, it
describes the ‘smoothness’ of the terrain. It is mathematically given as 𝜎𝑠(𝑝𝑖)𝑠(𝑝𝑗) = −

1
4𝑑𝑖𝑗 +1

for 0 ≤ 𝑑𝑖𝑗 ≤ 4, and zero otherwise, with 𝑑𝑖𝑗 = |𝑝𝑗 − 𝑝𝑖|. With all this information, one
can perform interpolation using Ordinary Kriging. Compute the interpolated terrainheight for
𝑝 = 2. Also do this for 𝑝 = 3

2 .
Answer 2 [*] The terrainheight exactly halfway the two observation positions can, log

ically, be expected to be the average of the two observations. Kriging will also provide this
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Figure 11.11: On the left, problem statement for Question 2. Two observations of height are given (shown by the
circles), 𝑦1 = 3 and 𝑦2 = 4, at positions 𝑝1 = 1 and 𝑝2 = 3 respectively, and one is asked to interpolate the height
for position 𝑝0 = 2. On the right, covariance function 𝜎𝑠(𝑝𝑖)𝑠(𝑝𝑗) for Question 2.

answer. The variance matrix for the signal at the two observation positions 𝑝1 and 𝑝2, using
the covariance function in Figure 11.11 on the right, reads

𝑄𝑠𝑠 = (
1 1

21
2 1 )

Together with the measurement noise 𝜎2𝑒1 = 𝜎2𝑒2 =
1
2 , the variance matrix of vector 𝑦, as

outlined with (11.7), becomes

𝑄𝑦𝑦 = (
3
2

1
21

2
3
2
)

and its inverse reads

𝑄−1𝑦𝑦 = (
3
4 −14
−14

3
4
)

With (11.12) and 𝑙 = (1, 1)𝑇, the estimated mean terrain height becomes �̂� = 7
2 . Then with

(11.11), and matrix, or actually vector 𝑄𝑧0𝑦 as 𝑄𝑧0𝑦 = (
3
4

3
4 ), based on the distance from

𝑝0 to 𝑝1, and the distance from 𝑝0 to 𝑝2, and the covariance function of Figure 11.11, we
obtain, as expected

�̂�0 =
7
2 + (

3
4

3
4 ) (

3
4 −14
−14

3
4
) [( 34 ) − (

1
1 )

7
2] =

7
2

Repeating the exercise for 𝑝0 =
3
2 yields �̂�0 =

27
8 . The full interpolation result is shown

in Figure 11.12. Apparently, interpolation with Ordinary Kriging, does not yield a straight
line passing through the two observation points. The observations 𝑦1 and 𝑦2 are subject to
measurement error. And also mind that in Ordinary Kriging, one assumes that the attribute
under consideration has a constant mean across the entire spatial domain. That is why the
result is an in between the straight line and a flat horizontal line, and does not pass through
the two observations. As a final exercise, verify yourself that for 𝑝0 = 1 you obtain �̂�0 = 3, and
�̂�0 = 4 for 𝑝0 = 3, when the measurement noise can be neglected, i.e. when 𝜎2𝑒1 = 𝜎2𝑒2 = 0.
In this case the interpolated result is exactly matching the observations 𝑦1 and 𝑦2.
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Figure 11.12: Interpolation result using Ordinary Kriging for Question 2, �̂� is given by the dashed line, and the
interpolation �̂�0 by the solid line in blue; the two circles give the observations.
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12
Introduction

The Global Positioning System (GPS), also known as the NAVigation Satellite Time And Ranging
(NAVSTAR) system, is one the most successful satellite systems to date. The first GPS satellite
was launched back in February 1978. GPS is a oneway radio ranging system which provides
realtime knowledge of one’s Position and Velocity, and a very accurate Time reference as well
(all together referred to as PVT).

GPS provides Positioning, Navigation and Timing (PNT) functionality, which is very valuable
not only for the US military, for which it was first developed, but also to a myriad of commercial
activities, as well as the general public at large.

The following chapters provide an introduction to GPS positioning. There is much more
more of information available on this subject, and the reader is therefore referred to, for
instance, the textbooks [31] and [32].

GPS: system architecture
The GPS system consists of three segments.

1. The space segment, consisting of 24 or more satellites, with accurate atomic clocks on
board, continuously transmitting ranging signals to Earth.

2. The control segment, consisting of a number of ground stations, which monitors the
satellites, computes their orbits and clock offsets, and uploads this information to the

Figure 12.1: GPS block IIF satellite, built by Boeing. These GPS satellites, 12 in total, have been launched
between 2010 and 2016. They have a design lifetime of 12 years. The full GPS constellation nominally consists of
24 satellites. Image courtesy of Boeing [33].
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128 12. Introduction

satellites, which in turn encode this information on the ranging signal (the socalled
navigation data).

3. The user segment, simply consisting of many GPS receivers, which each track four or
more GPS satellites, and compute their own position.

Market developments
The success of GPS is strongly linked to the everdecreasing costs of GPS receivers, which
primarily consist of electronic hardware. While highend receivers still cost in the order of $
110k, massmarket receivers, such as those used in smartphones, cost no more than a few
dollars each.

Currently there are about as many GPS devices on Earth as people, nearly 7 billion, the vast
majority of which are in smartphones. The global Global Navigation Satellite System (GNSS)
downstream market revenues, from both devices and services, are currently (2020) around
150 billion Euro, according to the market report by the European GNSS Agency (GSA), now
the European Union Agency for the Space Programme (EUSPA) [34].

Delft perspective on GPS
GPS has found a wide range of applications and has become a standard utility in today’s
society. An important contribution to the history of GPS, which goes back to the sixties of last
century only, was made in Delft. Most, if not all GNSS highprecision positioning equipment
in use today on land, in the air, in space and at sea, has a particular ‘made in Delft’ algorithm
inside. This LAMBDA method is the key to highprecision, centimeterlevel positioning, and
achieving this very fast, typically instantaneously, thereby enabling RealTime Kinematic (RTK)
GPS positioning (Section 15.1.1). In the early days of GPS, users were forced to use long
observation times (minutes or even hours) in order to get to centimeter accuracy.

A breakthrough came in 1993, when Delft University of Technology professor Peter Teu
nissen invented the LAMBDA method, by means of which instantaneous carrier phase cycle
integer ambiguity resolution became possible.

Figure 12.2: Delft University of Technology professor in mathematical geodesy Peter J.G. Teunissen, inventing
the Leastsquares AMBiguity Decorrelation Adjustment (LAMBDA) method in 1993, at left. At right, EastNorth
scatterplots and Up timeseries of instantaneous 3D GNSS position solutions, before (in gray) and after (in green)
application of LAMBDA. Note the twoorder precision improvement between the solutions in gray and green. Photo
at left courtesy of H. Verhoef [35]. Image at right courtesy of R. Odolinski [36].

Highprecision positioning with GPS is possible through carrier phase measurements on
the signals received from the satellites. The carrier phase provides a millimeterprecise mea
surement of the satellitereceiver distance, but modulo the signalcarrier wavelength, with
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the quotient referred to as the cycle ambiguity, cf. Figure 13.2. Hence, to exploit the high
precision of the carrier phase for ranging, one first needs to determine its ambiguity, being
the unknown integer number of wavelengths that fit into the satellitereceiver distance. As
this needs to be done for every satellite, on every signal frequency and for a satellitereceiver
geometry that changes only slowly over time (due to the highaltitude satellite orbits), cor
rect resolution of all ambiguities together boils down to a highdimensional integer estimation
problem with a search over a typically elongated hyperellipsoidal search space, a situation
which was only improved by employing long observation times in the early days. Today the
LAMBDA method, by means of a smart linear transformation of the ambiguities, can solve this
integer leastsquares search problem very efficiently and fast, thereby enabling instantaneous
highprecision GPS positioning. More about carrier phase integer ambiguity resolution can be
found in Chapter 23 of [31].

Overview of this part
Chapter 13 presents the basic concepts of the measurement of traveltime of a radio signal
from a GPS satellite to a receiver. With these measurements of range as input, Chapter 14
describes the default mode of GPS positioning, referred to as standalone or singlepoint
positioning. The next chapter introduces the concept of relative positioning, by means of
which highaccuracy, centimeterlevel positioning is made possible. Chapter 16 presents, after
a brief overview of the four major Global Navigation Satellite Systems (GNSS), an overview of
the wide range of applications of GPS/GNSS in today’s society.





13
Ranging

13.1. Radio signal
The GPS satellites transmit signals in the socalled Lband (i.e. 1 to 2 GHz range) of the elec
tromagnetic radio frequency spectrum. GPS uses Code Division Multiple Access (CDMA) to
allow different satellites to send signals at exactly the same center frequency without interfer
ing with each other. The signal consists of a carrier wave on which each satellite modulates its
own unique Pseudo Random Noise (PRN) spreading code, see Figure 13.1, and, at a low rate,
the satellite orbit and clock information. The signals arrive at the receiver with an unknown
delay due to travelling all the way from satellite to receiver, and due to the relative velocity of
the GPS satellites with respect to a GPS user on or near the Earth’s surface, with an unknown
Doppler frequency shift.

13.2. Measurement of range
GPS offers two types of range measurements: pseudorange measurements and carrier phase
measurements.

13.2.1. Pseudorange measurement
A GPS receiver typically consists of tens to hundreds of socalled channels, and will allocate
each of these to a specific GPS (GNSS) satellite. When a GPS receiver first starts up, it will
begin to search for a particular GPS satellite on each of its channels, by scanning (trying) for
the corresponding spreading codes at different Doppler offsets and time delays. This is done
by overlaying the received signal with a local copy or replica of the same code and then (time)
shifting it until correlation shows a maximum (best fit, or match). The time shift then directly
yields the traveltime measurement.

Once the receiver has locked onto the spreading code, it can start regularly taking pseudo
range code and Doppler frequency measurements, which are basically the shift in time (delay)
and the shift in frequency that are required to maintain the tracking lock (onto the received
satellite signal).

Through the pseudorange, the receiver measures the traveltime of the radio signal from
satellite ‘s’ to receiver ‘r’:

𝜏𝑠𝑟 = 𝑡𝑟 − 𝑡𝑠 (13.1)

where 𝑡𝑠 is the time the signal was transmitted by the satellite, and 𝑡𝑟 the time the signal
was received at the receiver, later noting that these clocks may, to some extent, deviate from
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Figure 13.1: The GPS L1 CAsignal is composed of a carrier wave (a sinusoid with a frequency of 1575.42 MHz; not
to scale in the above diagram), a spreading code (a sequence of ‘0’ and ‘1’ bits/chips, here represented by values
‘1’ and ‘+1’, and unique for each satellite), and a low rate navigation data message. Both the spreading code
and navigation message are phasemodulated on the carrier wave, through a technique called Binary Phase Shift
Keying (BPSK); basically multiplying the carrier by the ‘1’ and ‘+1’ values of the spreading code and navigation
data, and the resulting modulated signal is shown at bottom. For the socalled CAcode on the GPS L1frequency
signal, the spreading codes are all publicly available, and GPS receivers have them built in. CA refers to Coarse
Acquisition, but can also be understood as Civilian Access.

the true time. The measured traveltime is converted into the pseudorange, expressed in unit
meter, through

𝑝𝑠𝑟 = 𝑐𝜏𝑠𝑟

by multiplying by the speed of light 𝑐 in vacuum (𝑐 ≈ 3 ⋅ 108 m/s).
The pseudorange represents the traveltime of the signal, and thereby ideally the distance

from satellite to receiver. In practice it is affected by the satellite clock offset (known to the
receiver through the navigation message), the receiver clock offset, which is unknown, and a
number of additional delays, which we cover in the sequel (Figure 14.6), and all multiplied by
the speed of light. The clock error is addressed in Section 21.2. In particular the oscillator in
the receiver, driving the clock, will not behave perfectly, and hence the receiver clock may run
ahead of time, or lag behind. The time shown by the receiver clock is denoted by 𝑡𝑟(𝑡), and
it is a function of true time 𝑡. It equals true time 𝑡, plus a socalled clock offset 𝛿𝑡𝑟(𝑡), hence

𝑡𝑟(𝑡) = 𝑡 + 𝛿𝑡𝑟(𝑡) (13.2)

When the receiver measures the traveltime, to eventually produce the pseudorange measure
ment, it ‘reads’ the moment of signal arrival at its own clock, and hence this measurement is
off by an amount of 𝛿𝑡𝑟(𝑡). The traveltime can be conceived as being obtained by ‘reading’
the receiver clock at signal reception, and ‘reading’ the satellite clock at signal transmission,
hence the measured traveltime reads

𝜏𝑠𝑟(𝑡) = 𝑡𝑟(𝑡) − 𝑡𝑠(𝑡 − 𝜏(𝑡))

Mind that the (true) traveltime 𝜏(𝑡) is a function of time, as the receiver may move, and the
satellite for sure moves. Substituting here the expression for 𝑡𝑟(𝑡), assuming that the satellite
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Figure 13.2: Carrier phase measurement: only the fractional phase difference can be measured, shown in red
in units of length [m] (with Φ ∈ [0, 2𝜋⟩ when expressed in radians; 𝜑 = 𝜆 Φ

2𝜋 ), and the total distance from the
satellite to the receiver equals multiple wavelengths 𝜆 plus the fractional phase difference. The carrier wave is
sent continuously, and the receiver cannot distinguish one cycle from another. The unknown integer number of
wavelengths, 𝑁, at the start of signal tracking, is referred to as ambiguity. In this example 𝑁 = 4.

clock is perfectly on time, hence 𝑡𝑠(𝑡−𝜏(𝑡)) = 𝑡−𝜏(𝑡) (the satellites carry atomic clocks), and
multiplying by the speed of light now gives:

𝑝𝑠𝑟(𝑡) = 𝑐𝜏𝑠𝑟(𝑡) = 𝑐𝜏(𝑡)⏝⏟⏝
𝑙𝑠𝑟(𝑡)

+𝑐𝛿𝑡𝑟(𝑡)⏝⎵⏟⎵⏝
𝑏𝑟(𝑡)

(13.3)

where, in the absence of for instance atmospheric delays, 𝑙𝑠𝑟 denotes the geometric distance
between satellite and receiver. This equation shows that the pseudorange is a measure for
the geometric distance 𝑙𝑠𝑟, apart from the receiver clock offset 𝑏𝑟, and hence the term pseudo
range.

13.2.2. Carrier phase measurement
Additionally, a GPS receiver may measure the fractional phase difference between the received
carrier wave from the satellite and a locally generated copy (replica). And, it can keep track
of the number of cycles of the carrier wave since the start of tracking, together known as
the carrier phase (CP) measurement. This measurement includes the accumulated number of
‘zerocrossings’ since lockon of the signal (for instance, when the fractional phase jumps from
1.99𝜋 to 0.02𝜋, the full period is accounted for and the resulting carrier phase measurement,
output by the receiver, is 2.02𝜋).

The carrier wave measurement is a very precise measure of the distance between the
satellite and the receiver, but the initial number of carrier wave cycles is unknown, and needs to
be estimated before the carrier phase measurements can be effectively used, see Figure 13.2.
The much better precision of the carrier phase measurement with respect to the pseudorange
code measurement can be understood from Figure 13.1, since the carrier period is much
smaller than the code chip duration (for the L1 CAcode signal, 1540 periods of the carrier fit
in one chip of the Pseudo Random Noise (PRN) spreading code).

13.2.3. Concluding remarks
Linking to the exposition on measuring distances in Chapter 20, the pseudorange measure
ment corresponds to ‘pulsebased’ranging, and the carrier phase measurement obviously to
‘phasebased’ranging, see Section 20.1 on the principles of ranging, though one should note
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Figure 13.3: Example of time series of (at left) C1 pseudorange measurements, in meter, (in the middle) L1 carrier
phase measurements, in cycles, and (at right) D1 Doppler frequency measurements, in Hertz, of a stationary,
permanent receiver in Delft, cf. Figure 16.1, tracking GPS satellite PRN20.

that GPS is about oneway ranging (rather than twoway ranging, as in Chapter 20).
The receiver can also measure the received signalstrength, through the socalled carrier

tonoisedensity ratio C/N0, which gives an indication of the quality of the measurement (larger
signalstrength yields more precise measurement).

And some receivers output also the measurement of the Doppler frequency of the carrier
wave, which is a measure for the (relative) velocity of the receiver with respect to the satellite
(along the line of sight), see also Section 20.2. The Doppler frequency, multiplied by the
wavelength, presents the rangerate ̇𝑙𝑠𝑟, that is, the change in range 𝑙𝑠𝑟(𝑡) per unit time.

The measurements can be stored, e.g. for the purpose of later analysis and processing, in
receiver manufacturer proprietary format or in a generally accepted exchange format, namely
RINEX, see Appendix F.

The pseudorange measurement precision is typically at the one or few meter level for low
cost, massmarket equipment, and can get down to the few decimeter level for professional
highend equipment.

The carrier phase measurement precision ranges from the few centimeter to the millimeter
level. The carrier phase is an ambiguous measurement of distance, but it is more precise than
the pseudorange, typically by two orders of magnitude.

Figure 13.3 shows measurements, collected by a stationary receiver in Delft, on signals
received from GPS satellite PRN20, as a function of time. A passover of a GPS satellite typically
takes several, up to 7 hours. With a nearly circular orbit of the GPS satellite around the Earth,
the distance from satellite to receiver is shortest when the satellite is directly overhead. By
default actually the negative of the Doppler frequency is output by the GPS receiver (as shown
in the graph at right, the measured Doppler frequency is positive (in the interval from about
710 hours), while the distance at the same time, as shown in the graph at left, is decreasing).

13.3. Multifrequency ranging
One of the major error sources in GPS is due to the ionosphere, see also Figure 14.6 and
Table 14.1. The ionosphere is a ionized part of the Earth’s upper atmosphere. There ultraviolet
(UV) solar radiation separates electrons from neutral gas atoms and molecules. The free
electrons in the ionosphere delay the radio signals, and thus affect the range measurements,
with delays in terms of distance ranging from a few meter to hundreds of meters.

The largest delays occur round the geomagnetic equator around local noon, and during
solar maxima. The ionospheric delay may be highly variable, as a function of both time and
space.

One way of dealing with the ionospheric delay is to track signals from the same satellite
on two or more frequencies. The ionosphere delay scales, to a very good approximation,
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with the inverse of the square of the radio frequency of the signal, and this relation can
be used to create the socalled ionospherefree range measurements (a linear combination
of measurements at two different frequencies, from which the ionospheric delay has been
removed). For this reason the GPS satellites were originally designed to transmit ranging
signals on both the L1 (1575.42 MHz) and L2 (1227.60 MHz) frequency.





14
Positioning

GPS positioning is based on the concept of multilateration (not triangulation). By measuring
distances to a number of GPS satellites, as shown in Figure 14.1, and using the known satel
lite positions, a GPS receiver can compute its own position. To estimate the three position
coordinates of the receiver 𝑥𝑟, 𝑦𝑟, 𝑧𝑟, and the receiver clock offset 𝑏𝑟, a GPS receiver needs
to track at least 4 satellites.

14.1. Geometric interpretation
Knowing ones distance to an object (satellite) at a known position, translates into being on
a circle (in 2D) or a sphere (in 3D) around this object (with the satellite in the center). As
we have seen with (13.3), the GPS pseudorange measurement relates to the geometric range
(distance) from satellite to receiver, but, also to an offset caused by the receiver clock! This
means, the pseudorange gives us the distance from satellite to receiver, but it may or will be
too small, or too large by a certain amount, namely the receiver clock offset 𝑏. The good news
is that the receiver clock offset is the same for all pseudoranges measured by the receiver at
a specific time. If the receiver clock is ahead of GPStime, all pseudoranges will be measured
too long, and by the same amount. This leads us to the approach of solving for three position
coordinates and the receiver clock error at the same time, and hence, requiring pseudorange
measurements to at least four satellites (rather than three).

To see the effect of the receiver clock error on the positioning problem at work, we consider
a simple twodimensional positioning example (in which we assume that there is no effect of

Figure 14.1: GPS positioning — in three dimensions — is based on measuring pseudoranges to at least four
satellites, of which the positions are known. Visualization by Axel Smits [37].
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Figure 14.2: Twodimensional positioning example with three satellites (at known positions, represented by the
black dots). The measured pseudoranges are visualized by circles, in green at left, and in blue at right.

Figure 14.3: The process of determining the receiver clock offset: the measured pseudoranges have to be reduced
or enlarged, but all with exactly the same amount, in order to meet at one physical position. The amount to make
that happen is the receiver clock offset. The different colors represent different values for the receiver clock offset.

noise present in the pseudorange measurements). So, in two dimensions, we would need to
solve for two receiver position coordinates and one receiver clock error, hence in total three
unknown parameters, so we need at least three pseudorange measurements.

In Figure 14.2 at left, the measured pseudoranges are shown in green, and apparently
these three green circles do not all meet in one point. The pseudoranges are ‘too short’, the
reason obviously being the receiver clock lagging behind. When the radii of the green circles
are enlarged, all by exactly the same amount, to yield the blue circles, as shown at right, we
arrive at an intersection of all three circles in one point. We have solved for the two position
coordinates, and the receiver clock offset as well1. This clearly demonstrates that positioning
and timing are intimately related!

14.2. Pseudorange observation equation
With expanding the oneway geometric range 𝑙𝑠𝑟 between satellite ‘s’ and receiver ‘r’ as

𝑙𝑠𝑟 = √(𝑥𝑠 − 𝑥𝑟)2 + (𝑦𝑠 − 𝑦𝑟)2 + (𝑧𝑠 − 𝑧𝑟)2
1When, in this example, the receiver clock would behave perfectly and be exactly aligned with GPStime, we could
solve the twodimensional positioning problem by measuring just two pseudoranges, which then directly give us
two proper distances, though two circles may intersect at two points actually. With GPS this would be no problem,
as the satellites are at 20.000 km distance, and the other intersection point will generally be on the other side of
the Earth, or even way beyond.
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Figure 14.4: Threedimensional Cartesian EarthCentered EarthFixed (ECEF) coordinate system for GPS position
ing.

using a threedimensional Cartesian coordinate system as shown in Figure 14.4, pseudorange
observation Eq. (13.3) turns into

𝑝𝑠
𝑟
= √(𝑥𝑠 − 𝑥𝑟)2 + (𝑦𝑠 − 𝑦𝑟)2 + (𝑧𝑠 − 𝑧𝑟)2 + 𝑏𝑟 + 𝑒𝑠𝑟 (14.1)

where we omitted the argument of time 𝑡. The satellite position coordinates at time of signal
transmission are 𝑥𝑠, 𝑦𝑠 and 𝑧𝑠, and the receiver position coordinates at time of signal reception
are 𝑥𝑟, 𝑦𝑟 and 𝑧𝑟. The satellite position, as well as the satellite clock offset, is available to the
user through the navigation data message, cf. Figure 13.1. Parameter 𝑏𝑟 equals the receiver
clock offset 𝛿𝑡𝑟 multiplied by the speed of light 𝑐, cf. (13.3). If the receiver clock is ahead of
GPS system time, 𝑏𝑟 is positive, and the measured pseudoranges are ‘too long’. And finally
note that we included the (unavoidable) random measurement error 𝑒𝑠𝑟 on the right hand side
of Eq. (14.1).

14.3. Positioning: parameter estimation
In practice, as one typically observes more satellites than the minimum of four, GPS positioning
does not actually involve drawing circles or spheres, but employs the principle of least squares
estimation. First the observation model is defined, which links the observations to the unknown
parameters.

Since the GPS observation model is nonlinear, this involves a linearisation with respect to
the unknown parameters, around an approximate position, see Section 8.4. The linearized
model of observation equations reads
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(14.2)

where we assume to have 𝑚 satellites in view. Section 9.3 presents the linearization of
a distance observation equation in two dimensions, and extension into three dimensions is
straightforward. The coefficients in the above designmatrix for the coordinate parameters
are actually the elements of the unitdirection vector 𝑢𝑠𝑟 from the receiver ‘r’, pointing to the
satellite ‘s’, cf. (9.5). The above model carries 𝑚 observations and 4 unknown parameters,
and hence the redundancy equals 𝑚 − 4.
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Next, a leastsquares algorithm is used to solve this linearized model, presented in matrix
vector form. When an 𝑚 × 𝑚 variance matrix of the pseudorange observables is involved, a
Best Linear Unbiased Estimation solution can be obtained, which minimizes the uncertainty of
the solution (see Chapter 8). Then one can also obtain the variance matrix of the parameter
estimators, through (8.7), and analyse the precision of the position coordinates.

Most users of GPS are interested in position coordinates 𝑥𝑟, 𝑦𝑟, and 𝑧𝑟. Through knowledge
of the receiver clock offset 𝑏𝑟 = 𝑐𝛿𝑡𝑟 one has in fact access to GPS system time, which is an
atomic time scale, and thereby also to UTC (Coordinated Universal Time).

Similar to the position coordinates estimation based on pseudorange measurements, the
threedimensional velocity vector of the receiver can be estimated from the measured Doppler
shift measurements, cf. Section 13.2.3.

A wellknown and widely used format for storing and exchanging GPS (GNSS) Position,
Velocity and Time (PVT) solutions is NMEA, see Appendix E.

14.4. Reference systems
Relying, by default, on the given satellite positions in the navigation message of the GPS signal,
GPS positioning yields Cartesian coordinates (𝑥, 𝑦, 𝑧) in WGS84, the World Geodetic System
1984, which is an EarthFixed, EarthCentered (ECEF) coordinate system, as presented in
Figure 14.4. These Cartesian coordinates can be converted into geographic, or ellipsoidal
coordinates latitude 𝜑, longitude 𝜆, and ellipsoidal height ℎ, see Chapter 29.

In differential mode (introduced in the next chapter), the position coordinates for the user
receiver are in the same reference system as the position coordinates of the base, or reference
station, generally provided in a local or regional reference system (e.g. ETRS89 in Europe, a
realization of the European Terrestrial Reference System).

More information about reference systems and transformations from one to another can
be found in Chapters 31 and 34.

14.5. GPS accuracy and error sources
The quality of the GPS position solution is largely dependent on the number of available
satellites and their geometry with respect to the user. If enough satellites are visible on
all sides of the receiver, at high and low elevation angles, a good position accuracy can be
expected. The only weakness in the geometry is the fact that there are no satellites visible
beneath the receiver, as one cannot track and observe satellites below the local horizon. As
a result vertical position accuracy is generally poorer than the horizontal accuracy by about a
factor of 1.5.

In many practical situations one or more satellite signals are blocked by surrounding build
ings or other obstacles which is called shadowing. In this case GPS performance might be
significantly degraded. Furthermore, in builtup areas, GPS receivers often experience signal
reflections, i.e. signals arrive at the receiver after bouncing off an object. Since the reflected
signal path is always longer than the direct path, this causes a corresponding error in the
range measurement. It is also possible that both the direct and reflected signals arrive at
the receiver, which is referred to as multipath. In this case, the receiver must deal with
the superposition of these signals, generally resulting in a biased range measurement, see
Figure 14.5.

Carefully selecting the location for a survey can help to keep the impact of multipath at a
minimum, as well as the use of a good antenna.

The accuracy of standalone positioning with GPS, also referred to as singlepoint position
ing, or absolute positioning, according to model (14.2), in the order of 515 meters under
reasonable satellite visibility, is limited by the accuracy of the range measurements (time can
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Figure 14.5: Multipath: the direct line of sight signal from the satellite is received, though as well as a signal
which has been reflected by the building. The reception of also a reflected signal, which has made a detour, will
generally cause a bias in the measurement.

Figure 14.6: GPS error sources. The receiver clock offset (shown in faded green) is accounted for in the observation
equation (14.1), and hence not to be considered as an error source.

error source 95%value

satellite orbit 2 m
satellite clock 25 m
ionosphere 1590 m
troposphere 20 m
multipath 110 m
receiver noise 13 m

total range 510 m

Table 14.1: GPS error budget for standalone positioning, see also Figure 14.6. The errors are given in the range
domain, using the satellite (broadcast) navigation data message, and after Klobuchar ionospheric model correction
(which in practice yields a 50% reduction of the ionospheric delay error), as well as tropospheric delay correction
based on an apriori (blind) model (which yields about 90% of reduction of the tropospheric delay error). The
larger values for ionospheric and tropospheric delay may occur for slant ranges to satellites at low elevation.
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Figure 14.7: Surveymarker at TU Delft campus with accurate groundtruth coordinates: 𝑋 = 3923768.0147 m, 𝑌
= 300255.7048 m, 𝑍 = 5002640.2228 m (ITRF2014 at epoch 2021.50).

be determined correspondingly with a tens of nanoseconds accuracy). The GPS pseudorange
measurements contain errors due to inaccurate satellite orbit and clock information, delays
along the path of the radio signal, including atmospheric delays (ionosphere and troposphere),
local effects including multipath, and measurement noise, see Figure 14.6 and Table 14.1.

Finally it is mentioned that a GPS receiver, using electromagnetic signals received from
the satellites, determines the position of the antenna phase center (typically a point inside or
slightly above the antenna) as this is where the radio signals actually arrive. Handling the so
called antenna Phase Center Offset (PCO) with respect to the bottom of the antenna, usually
a cm to dmeffect, is important in highprecision positioning discussed in the next chapter.

Figure 14.8: Example of GNSS standalone positioning for a duration of 5000 seconds at a 5 second interval, on
September 2nd, 2021, with measurements to about 25 GNSS satellites. At left: scatter of horizontal position error,
at right: time series of vertical position error.

14.6. Standalone positioning: example
With the equipment of Figure 15.7 a short experiment was carried out, lasting 5000 seconds.
The antenna was installed on a surveymarker on the TU Delft campus, of which accurate
position coordinates were already available, see Figure 14.7. The receiver ran in socalled
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East North Up

mean [m] 0.51 0.23 0.47
std [m] 0.15 0.35 0.41
rms [m] 0.53 0.42 0.62

Table 14.2: Empirical mean, standard deviation (std) and root mean square (rms) of position error, based on
𝑁=1000 GNSS standalone position solutions.

standalone positioning or singlepoint positioning mode, and every 5th position solution was
saved, hence the results shown in Figure 14.8 are obtained at a 5 second interval.

The graph at left shows the horizontal position scatter, Northcoordinate versus East
coordinate, and the graph at right shows the vertical position (Up) as a function of time. With
the given coordinates of the marker, we actually present the position error in Figure 14.8,
i.e. the difference of the measured position coordinate and the known groundtruth position
coordinate. Hence, the origin of this graph refers to the ‘true’ position. The position errors
are expressed in a local topocentric coordinate system, in terms of local East, North and Up,
see Section 29.4.

Table 14.2 presents the resulting empirical mean, standard deviation (std) and the root
mean square (rms), which is the square root of the MSE, see Chapter 6, of the position error
in East, North and Up, showing a better than 1 meter accuracy of GNSS standalone positioning
using over 25 GNSS satellites.
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GPS positioning modes

Several techniques have been developed to improve on the GPS Standard Positioning Service
(SPS) accuracy (standalone positioning, as discussed in the previous chapter). Firstly, GPS
satellites broadcast a second, more precise, code on the same carrier wave, to provide the
Precise Positioning Service (PPS). However, this code is encrypted and can only be used to full
extent by the US military.

Fortunately, even more accurate positioning modes are available, all relying on a kind of
augmentation. This means that, next to the measurements collected by the user receiver, in
addition measurements are used of a nearby permanent GPS receiver, and/or that one relies
in addition on data products derived from a network of permanent tracking stations. Such a
network could provide precise estimates of the satellite positions for instance (more precise
than what we by default encounter in the navigation message on the GPS signal).

15.1. Relative positioning, or DGPS
Differential GPS (DGPS) uses a data link to a nearby base or reference station, i.e. another
GPS receiver at an accurately known position, and the relative position between the two is
obtained. Measurement data from this base station are used, to reduce the effects of the
atmospheric delays, satellite clock offsets and orbit errors. This can be achieved by differencing
the observations from both receivers to the same satellites, which eliminates these (common)
errors, which affect both receivers almost identically if the distance between them is small
enough, typically in the order of 5 to 10 km, considering that the satellites are at 20.000 km
distance, see Figure 15.1.

From the differenced observations, the socalled baseline (vector) between the two re
ceivers can be computed through leastsquares estimation. The position of the rover is then
obtained by adding the baseline vector to the accurately known coordinates of the reference
station. Generally the term ‘DGPS’ is used for relative positioning, though using only pseudo
range measurements.

15.1.1. RealTime Kinematic (RTK)
To obtain the highest possible accuracy from GPS, it is no longer sufficient to use only the
pseudorange code measurements, but rather the carrier phase measurements, introduced
in Chapter 13, are required. As mentioned before, the measurement of fractional phase
difference does pose the problem of the unknown initial number of carrier wave cycles, also
called the carrier wave ambiguity, which need to be estimated together with the other unknown
parameters.
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Figure 15.1: Relative GPS positioning combines measurements from a roving receiver with measurements from
a reference (or base) station. The position of the rover is actually computed relative to the position of the base
station. A number of errors, including atmospheric errors, is almost identical for two receivers in close proximity
to each other. Hence, these errors cancel in relative positioning.

An ambiguity consists of a fractional part at the satellite (equal for both receivers, and
already removed by the differencing between the base station and rover), a fractional part
at the receiver (equal for all tracked satellites), and an integer number of whole cycles. This
fact of unknown parameters being integers (rather than reals) is exploited in a technique
called RealTime Kinematic (RTK) positioning, or CarrierPhase (CP) based baseline processing
(if performed in post processing), by selecting a reference satellite and forming a second
difference between the measurement to a reference satellite and those to all other satellites,
to eliminate the fractional part at the side of the receiver. In this special case the double
differenced carrier phase ambiguities can be resolved to their integer number very efficiently
through integer leastsquares estimation. After only a few minutes or within tens of seconds
already, centimeterlevel position accuracy can be reached.

The requirement for a nearby reference receiver is a disadvantage of RTK, considering
effort and/or cost. With RTK the coverage area of a reference receiver or station typically has
a radius of ten, or tens of kilometers. In many regions and countries, networks of reference
stations, or Continuously Operating Reference Stations (CORS) have been deployed in order
to cover the entire area, and in this scenario sometimes the term networkRTK is used, see
Figure 15.2, where reference stations generally have a 3040 km interdistance. An example
of an application of RTK positioning in road construction is shown in Figure 15.3.

Many highend GPS receivers have RTK functionality builtin, but it can also be performed
with professional software, or even with open source software such as the RTKLIB program
package [40].

Today the measurements of the base station are communicated, in realtime, to the rover
receiver over an Internetconnection, using NTRIP. Networked Transport of RTCM1 via Inter
net Protocol (NTRIP) is an application protocol that supports the streaming of (differential)
GNSS data over the Internet, based on Hyper Text Transfer Protocol (HTTP). NTRIP has been
developed by the German Federal Agency for Cartography and Geodesy (BKG) [41]. With
the measurements of the base station becoming available in realtime at the rover receiver,
centimeter accurate position solutions are obtained right at the spot.

1Radio Technical Commission for Maritime Services  Special Committee 104 on Differential GNSS
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Figure 15.2: Example of network of permanent GPS tracking stations, of a commercial network RTK service
provider in the Netherlands, Belgium and Luxemburg. Image obtained with permission from 06GPS [38].

Figure 15.3: Excavator in the process of constructing a motorway embankment. RTKGPS provides accurate real
time position information to guide this machine (note the two GPSantennas on the back of the engine). Image
courtesy of Heijmans [39].

https://www.06-gps.nl
https://www.heijmans.nl/
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15.1.2. RTK — carrier phase observation equation [*]
The pseudorange observation equation was presented in (14.1) for the purpose of standalone
positioning. The errors discussed in Section 14.5 were basically all ignored.

The carrier phase measurement, Section 13.2.2, is much more precise than the pseudo
range — the contribution to the error budget in Table 14.1 by carrier phase multipath and
receiver noise would only be at the millimeter to a few centimeter level. The other error
sources, like atmospheric delays and satellite related errors are taken into account now, and
put together in a delay parameter 𝑑𝑠𝑟. The carrier phase observation equation, for the phase
𝜑𝑠𝑟 = 𝜆

Φ𝑠𝑟
2𝜋 expressed in meters, reads

𝜑𝑠
𝑟
= √(𝑥𝑠 − 𝑥𝑟)2 + (𝑦𝑠 − 𝑦𝑟)2 + (𝑧𝑠 − 𝑧𝑟)2⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

𝑙𝑠𝑟

+𝑏𝑟 + 𝑑𝑠𝑟 + 𝜆𝑁𝑠𝑟 + 𝑒𝑠𝑟

Parameter 𝑁𝑠𝑟 denotes the carrier phase cycle ambiguity, see Figure 13.2.

15.1.3. RTK — carrier phase positioning: parameter estimation [*]
We use relative positioning and develop the model of observation equations for a short baseline
(i.e. two receivers close together, up to 1020 km distance). The two receivers 1 and 2 being
close together implies that the delays will be very similar 𝑑𝑠1 ≈ 𝑑𝑠2 (keeping in mind that the
satellite is some 20.000 km away), and in the sequel we assume them to be really equal:
𝑑𝑠1 = 𝑑𝑠2 (and residual errors are assumed to go into the 𝑒error terms). With the position
coordinates of the reference or base station (𝑥1, 𝑦1, 𝑧1) being known, and taking the difference
of measurements across the two receivers, 𝜑𝑠1,2 = 𝜑𝑠2 − 𝜑𝑠1, we obtain
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with 𝑏1,2 = 𝑏2 − 𝑏1, 𝑁𝑠1,2 = 𝑁𝑠2 − 𝑁𝑠1 and 𝑒𝑠1,2 = 𝑒𝑠2 − 𝑒
𝑠
1. Note that when we would leave

the ambiguities 𝑁 out, the above model in structure very much resembles model (14.2) for
standalone positioning. The goal of RTKpositioning is to estimate the position coordinates of
the rover receiver 𝑥2, 𝑦2, and 𝑧2, and this is done while keeping the reference station fixed to
the given position coordinates.

In the above model the receiver clock offset parameter 𝑏1,2, as it is appearing equally
in all equations, can be removed by taking differences between measurements, e.g. 𝜑1,21,2 =
𝜑21,2−𝜑11,2. The resulting model of taking differences all with respect to the first measurement
𝜑11,2, reads

(
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Figure 15.4: Geometric interpretation of relative positioning with carrier phase measurements, which are inherently
ambiguous. The blue circle arcs, as possible solution for the rover receiver position result from the carrier phase
measurement to the blue satellite, and the green circle arcs to those to the green satellite. The arcs are spaced
by one wavelength 𝜆 of the carrier wave.

With carrier phase measurements to 𝑚 satellites, we have (𝑚 − 1) of these socalled double
difference measurements. The receiver clock offset parameter has been cancelled.

These two optional sections provide a very brief introduction to carrier phase based posi
tioning. For a more indepth coverage, the reader is referred to [31]. Leastsquares estimation
of integer parameters, such as the ambiguities 𝑁, is simple when there is only one. Ordinary
leastsquares estimation yields a realvalued estimate for this parameter, and rounding it to
the nearest integer yields the integer leastsquares estimate for the ambiguity. With more
ambiguity parameters present in the problem at the same time, as in the above model, this
becomes a seriously complex problem (for which an adequate solution is provided by the
LAMBDAmethod [31]).

Figure 15.4 provides a simple geometric interpretation of relative positioning with carrier
phase measurements which are inherently ambiguous, as only the fractional phase can be
measured. The rover receiver has to lie on one of the blue circle arcs, and at the same time
on one of the green circle arcs. The different arcs represent different integer values for the
ambiguity. The rover receiver is at one of the intersections, but as long as the ambiguities are
not known, it is not known at which one. For this geometric interpretation it is assumed that
there is no effect of noise present in the measurements, and the receiver clocks are assumed
to behave perfectly (𝑏1 = 𝑏2 = 0).

15.1.4. RTK — carrier phase positioning: example
With the equipment of Figure 15.7 a short experiment was carried out, lasting 1000 sec
onds. Using measurements from a permanent GNSS reference station (only 2 km away, cf.
Figure 16.1), received in realtime using NTRIP, the receiver provided socalled RTKfixed so
lutions (in ETRF2000). For every epoch, i.e. once every second, a new position solution was
computed, and the results are shown in Figure 15.5. The graph at left shows the horizon
tal position scatter, Northcoordinate versus Eastcoordinate, and the graph at right shows
the vertical position (Up) as a function of time. These measurements were taken at a survey
marker of which accurate position coordinates were already available cf. Figure 14.7, so, in the
graph of Figure 15.5 we actually present the position error, i.e. the difference of the measured
position coordinate and the known groundtruth position coordinate. Hence, the origin of this
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Figure 15.5: Example of Carrier Phase (CP) RealTime Kinematic (RTK) positioning for a duration of 1000 seconds,
on August 27th, 2021, with measurements of about 25 GNSS satellites, and successfully fixing the carrier phase
ambiguities (RTKfixed solution). At left: scatter of horizontal position error, at right: time series of vertical position
error.

East North Up

mean [m] 0.0016 0.0021 0.0068
std [m] 0.0033 0.0039 0.0072
rms [m] 0.0037 0.0044 0.0099

Table 15.1: Empirical mean, standard deviation (std) and root mean square (rms) of position error, based on
𝑁=1000 Carrier Phase (CP) RealTime Kinematic (RTK) position solutions (with ambiguities fixed).

graph refers to the ‘true’ position. The position errors are expressed in a local topocentric
coordinate system, in terms of local East, North and Up, see Section 29.4.

Table 15.1 presents the resulting empirical mean, standard deviation (std) and the root
mean square (rms), which is the square root of the MSE, see Chapter 6, of the position error
in East, North and Up, confirming centimeteraccuracy of RTKGPS positioning. This is an
improvement by a factor of 100 compared to the standalone positioning results in Figure 14.8.

15.1.5. RTK — carrier phase positioning: Digital Terrain Model (DTM)
Another short experiment was carried out to result in a centimeteraccurate 3D Digital Terrain
Model (DTM) of an embankment on the TU Delft campus, see Figure 15.6. The RTK survey of
this bank of earth took only 15 minutes (walking with the GNSSreceiver in a gridlike pattern
over this bank, and recording measurements every 1 second).

The RTKfixed position solutions have been interpolated, and the resulting DTM is shown
at right in Figure 15.6. With the DTM one can easily evaluate numerically the amount of
earthwork needed to create or remove this bank, in this case 442 m3.

15.1.6. Precise Point Positioning (PPP)
In those instances where a nearby reference receiver (or network) is not available or cost
prohibitive, Precise Point Positioning (PPP) is an attractive alternative. PPP only relies on a
global, very sparse network of reference receivers (e.g. some 40 receivers worldwide, and
the nearest reference station can be 1000 km away, or even further), which track the GPS
satellites and compute corrections to the errors in the satellite orbits and clocks. Conventional
PPP uses dualfrequency data to eliminate the ionosphere delay, while a lowcost variant
uses single frequency data with a (predicted) ionosphere model. The fractional carrier phase
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Figure 15.6: Example of a centimeteraccurate 3D Digital Terrain Model (DTM) resulting from Carrier Phase (CP)
RealTime Kinematic (RTK) positioning. The DTM is presented in the national RDNAP reference system (see
Chapter 35), actually with x85600 m, and y445900 m. The DTM is viewed from the SouthEast, like the photo
on the left.

ambiguities cannot be eliminated, which means that integer leastsquares estimation is not
possible. Ambiguities can still be estimated as constant values though, since an ambiguity
does not change as long as the receiver keeps tracking the satellite, a fact used in the PPP
data processing.

However, because the ambiguities cannot be fixed to integer values, PPP suffers from a
longer convergence period than RTK (think of tens of minutes). After a convergence period in
which the accuracy of the estimated ambiguities improves gradually, the PPP solution starts
relying more and more on the phase measurements. The eventual position accuracy for dual
frequency PPP can reach centimeter, or even millimeter level, while single frequency PPP can
reach an accuracy of a few decimeter.

15.2. Current developments
Much research effort is spent to try and combine the best aspects of PPP and RTK, i.e. using a
sparse (global) reference network and ambiguity resolution to enable precise positioning. Wide
Area RTK and PPPRTK are based on the principles of RTK, but try to stretch the interstation
distances to several hundreds of kilometers, while PPPAR starts from the global PPP network,
and tries to solve the problem of ambiguity resolution (AR). The ultimate goal is to achieve
high precision positioning across a (very) large area.

Another development is to bring highaccuracy positioning techniques, e.g. RTK and PPP,
to lowcost devices. An example is shown in Figure 15.7. The smartphone retrieves GPS
differential corrections (or measurements) of a nearby reference station through an Internet
connection using NTRIP, and forwards these to the GPS receiver, which is connected via USB
to the smartphone. The firmware on the GPS receiver chip combines the corrections with the
measurements of the rover receiver, and delivers a centimeter accurate RTKposition solu
tion, which it relays back to the app on the smartphone. This allows for centimeter accurate
navigation, in realtime, with your smartphone.

The antenna of the rover receiver, at right in Figure 15.1, is typically mounted on a
lightweight rangepole, for convenience of the surveyjob. The position of the antenna on
top of the rangepole is being measured (with GPS), and the obtained coordinates are con
verted into those of the object or marker point occupied by the bottomtip of the rangepole,
using the fact that the rangepole is being held vertically straightup, and knowing its size.

Recently rangepoles with builtin tilt compensation have become available. The tilt angle
𝜁 is being measured, for instance by means of an inertial measurement unit, and the horizontal
displacement or offset is simply found as 𝑙 sin 𝜁, see Figure 15.8.



152 15. GPS positioning modes

Figure 15.7: At left: dualfrequency, multiconstellation GNSS receiver with receiver board at bottom, small patch
antenna (black) on top, and smartphone with Android positioning app at right; a total equipment cost of below
500 Euro (ublox ZEDF9P), yet capable of providing cmaccurate RTKGNSS positioning. At right: screenshot of
SW Maps app by Softwel (P) Ltd.

Figure 15.8: Principle of GPS range pole with tilt compensation. Tilt angle 𝜁 is measured to provide, with known
size 𝑙, the horizontal displacement 𝑙 sin 𝜁.
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Figure 15.9: Accuracy of various GPS positioning modes for a static receiver. The integration time is the total
measurement duration, along the horizontal axis, and the position coordinates accuracy is along the vertical axis.
Note the logarithmic scales. CP&RTK stands for Carrier Phase and RealTime Kinematic positioning.

Satellite Based Augmentation Systems (SBAS), e.g. the European EGNOS system, de
signed to enable GPSbased aircraft precision approaches, rely on the same principles as PPP.
However, given the primary application, the focus is on integrity rather than accuracy (integrity
refers to the trust that can be placed in the resulting position solution, the solution is largely
faulttolerant). Carrier phase measurements are only here used to ‘smooth’ the pseudorange
solution. SBAS is a pseudorange code Differential GPS approach for large geographical areas
(wide areas). An additional advantage of using SBAS is that the corrections are transmitted
on the same radio frequency as GPS signals, so no additional data link is necessary.

15.3. Processing strategies, dynamic model and observation pe
riod

As already hinted at, the GPS position accuracy improves when the measurement time duration
increases. One important factor here is the dynamic model of the receiver motion, or how the
measurement epochs can be ‘linked’ to each other.

If the receiver is stationary, the improvement will be most notable, as we can basically
estimate a single position from many measurements (a static solution). The position accuracy
of a static receiver is shown as a function of the measurement duration in Figure 15.9 for each
of the previously covered GPS processing strategies.

For a moving receiver the accuracy can also improve over time, if we can exploit the fact
that some of the other parameters are constants, e.g. the ambiguities, or, if the movement can
be constrained or predicted to some extent based on the current position (e.g. a car driving
along a straight line, at constant velocity). This can be implemented with a Kalman filter, or a
recursive leastsquares data processing algorithm.

In a kinematic solution, position coordinates are computed for each measurement instant
(for instance every 1 second), to accomodate the fact that the receiver is/was actually moving
during the survey. As a result one then obtains a list of position estimates, e.g. one every
second, instead of one overall position solution as with a static survey. The list describes the
track or trajectory of the moving receiver.
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Two related issues are:

1. The difference between realtime processing, and postprocessing (for instance after
whole survey has been completed), where postprocessed results are generally more
accurate, but obviously not available right on the spot, and hence not suitable for certain
applications.

2. The measurement rate of the receiver: GPS receivers often take pseudorange code, car
rier phase, Doppler shift and signaltonoise (SNR) measurements once every second,
hence at 1 Hz, but depending on the application, 1020 Hz is also common practice
today, and technically up to a 100 Hz measurement rate is possible. To reduce the com
putational burden, data storage, and power requirement, lower measurement rates (e.g.
once per 30 seconds) are common in applications where objects move only very slowly,
like in geoscience on measuring tectonic plate motion. The impact of the measurement
rate on the position accuracy is marginal (a higher data rate can slightly improve pre
cision), because the measurement errors are generally correlated in time. This means
that measurements taken in quick succession are not independent, and thereby do not
offer, precisionwise, a lot of new/additional information.



16
GNSS and applications

In this chapter we present a concise overview of Global Navigation Satellite Systems (GNSS),
addressing GPS, Glonass, Galileo and BeiDou. Then we briefly touch upon the wide range of
applications of GNSS.

16.1. Global Navigation Satellite Systems (GNSS)
The Global Positioning System (GPS), developed by the US military and operated by the US
Air Force (USAF), is the first Global Navigation Satellite System of its kind. In order not to
be dependent on a US military system and/or to get their share of the GNSS market, other
countries have developed their own Global Navigation Satellite Systems (GNSS). The result is
that today a lot of GNSS satellites can be seen at the same time, anywhere on Earth, anytime.
Figure 16.1 shows as an example a socalled skyplot for Delft, with up to 40 GNSSsatellites
in view.

Recently we have seen a significant increase in the available Global Navigation Satellite
Systems, satellites, radiofrequencies and signals. These developments are briefly reviewed
in this section.

16.1.1. GPS
GPS is in the process of modernization. This is achieved by following up older satellites by
new satellites with expanded and improved capabilities. The civil L2C signal, for improved
dual frequency (civilian) performance, becomes available on more and more satellites. Even
more importantly, new GPS satellites also transmit an additional (wideband) signal on the L5
frequency (of 1176.45 MHz) primarily designed for safetyoflife applications (higher chiprate,
hence shorter chiplength, and more precise pseudorange measurements).

16.1.2. Glonass
The Russian GLObal NAvigation Satellite System (GLONASS), has been fully replenished and
at present has 24 active satellites. Planned modernizations of GLONASS include an additional
signal transmitted on the L5frequency, and a switch from Frequency Division Multiple Access
(FDMA) to CDMA, which will increase interoperability with other GNSSes.

16.1.3. Galileo
Galileo, the European GNSS, is still under development, currently with 22 satellites. The full
Galileo constellation for Full Operational Capability will consist of 30 satellites. The Galileo
system transmits navigation signals on four different carrier frequencies: L1/E1, L5/E5a, E5b

155
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Figure 16.1: Skyplot with GNSS satellites for October 8th, 2020, at 12:10 UTC, in Delft. The skyplot shows the
positions of the satellites of the various constellations, like GPS, GLONASS, Galileo and BeiDou, in the sky. The
outer circle represents the local horizon in Delft, 360 degrees around (0 is North, 90 East, etc). The smaller
circles refer to 30 degrees of elevation, above the horizon, and 60 degrees of elevation. The middle of the skyplot
corresponds to the socalled local zenith, which is directly overhead. The skyplot was obtained from the Trimble
NetR9 GNSS receiver at the TU Delft observatory, of which the antenna setup is shown at right.

and E6, two of which (E5a and E5b) can also be tracked together as one extra wideband
(AltBOC) signal with unprecedented pseudorange accuracy.

16.1.4. BeiDou
The Chinese BeiDou Navigation Satellite System (BDS), sometimes still known as Compass,
was designed to provide independent regional navigation in the first stage and global coverage
later. The BeiDou (phase III) constellation deployment has been fully completed in 2020, with
30 satellites in orbit, providing global coverage.

16.1.5. Concluding remarks
The realized and expected upgrades of and additions to the available GNSS signals can have
a range of improvements on many GNSS applications. Some of the more important ones are:
the higher pseudorange accuracy of the new signals, the availability of many more satellites
at once (more satellites available to combat urban environments, see Figure 16.1), and both
the availability of more radiofrequencies and satellites.

MultiGNSS positioning also brings new challenges, as socalled InterSystem Biases (ISB)
are introduced in the model. The system time as maintained by GPS may (will) not be the
same as the system time as maintained for Galileo, for instance. Hence one has to account
for the fact that these systems may have an offset in time with respect to each other. To use
multiple systems simultaneously in an optimal manner, these biases must be studied, and if
possible corrected or eliminated.

16.2. Applications
There are many different applications of GNSS positioning each with its own requirements
and, related to that, a preferred processing strategy.

• smartphones, car navigation, and personal navigation usually have the lowest require
ments, and the GPS (GNSS) standard positioning service suffices, cf. Figure 16.2.

• lane specific navigation advice for road users requires submeter position accuracy, which
can be fulfilled with single frequency PPP.
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Figure 16.2: Car navigation, route guidance and fleet management in traffic and transport are popular applications
of GNSS positioning, where standard positioning service suffices. In future, assisted and automated driving will
call for improved accuracy.

Figure 16.3: Both the on and offshore part are regularly surveyed, to monitor the development of the Zandmotor
(The Sand Engine), at the Dutch NorthSea coast, near Ter Heijde. This ‘building with nature’ project started
in 2011, and at right an aerial photo of the Zandmotor is shown, looking in Southern direction. Highprecision
RTKGPS is used for positioning the quad on shore, and the jetski in the water (note the GPSantenna at the back
of the jetski, in the inset). The measurements by the quad result in a Digital Terrain Model (DTM), and echo
sounder depth measurements by the jetski result in a seafloormap. Photo at left by Matthieu de Schipper [42].
Photo at right by Pmblom  own work, May 2016, taken from Wikimedia Commons [9] under CC BYSA 4.0 license.

• surveying for creating maps and construction works, requires cm to mm position accu
racy and will use RTK if available, or PPP otherwise, cf. Figures 16.3 and 15.6.

• deformation monitoring, due to Earthquakes, volcanic activity, mining or extraction of
petroleum or natural gas, as well as any number of scientific applications require the
highest possible accuracy and use carrier phase based positioning.

• aircraft precision approach and landing requires high integrity positioning, and can use
SBAS to obtain this.

• machine guidance, as shown in Figure 15.3 and in particular selfdriving vehicles require
high accuracy and integrity; this can be achieved by using RTKGNSS though this is still
subject of research, and likely fusion with additional sensors is in order.

There is also a number of GNSS applications, in which the position solution is not the
(primary) goal. Accurate time which is obtained through determining also the receiver clock
offset 𝑏𝑟, is used in timing applications. The standard positioning service allows for timing
at the 10100 ns level, and this is used for instance in telecommunication, cf. Figure 16.4,
electrical power grids, and financial networks.

https://commons.wikimedia.org/wiki/File:Zandmotor_luchtfoto_(airplane_cropped).jpg
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Figure 16.4: A GPS receiver is commonly used to synchronize base stations for telecommunication. Requirements
on timesynchronization for this application lie in the order of a 𝜇s. The photo shows a base station with a height
of 37 m, providing the full range of mobile services from 2G (GSM) to 5G (NR).

Nuisance parameters such as the atmospheric delays can also be used as observational
input e.g. to determine, together with using models, the state of the Earth’s ionosphere, or
derive troposphere delays, for instance for Numerical Weather Prediction (NWP).

GNSS radiosignals can also be used outside of their intended purpose, e.g. to determine
sealevel height by measuring reflected GNSS signals from orbit.

16.3. Resources
This part provides an introduction to positioning with GPS/GNSS. For a lot more of technical and
mathematical modeling information on GPS and GNSS positioning, navigation and timing, the
reader is referred to [31] and [32]. These textbooks also cover a wide range of applications.

The first source of information on GPS, as well as the point of contact is the Navigation
Center of the US Coast Guard [43]. Official U.S. government information about GPS is available
through GPS.gov [44].

The first source of information on Galileo and point of contact is the European Union Agency
for the Space Programme (EUSPA) [45].

The IGS is the International GNSS Service, a voluntary federation of universities and re
search institutions, operating permanent GNSS stations worldwide, and providing GNSS data
and products for high(est)precision applications [46].

16.4. Exercises and worked examples
This section presents a couple of questions and problems with (worked) answers on GPS
positioning.

Question 1 What are the largest remaining error sources in shortbaseline DGPS, explain
your answer.

Answer 1 The atmosphere delays as well as the satellite orbit and clock errors are elimi
nated in DGPS, cf. Figure 15.1, which leaves multipath and (pseudorange) measurement noise
as the largest error sources, cf. Figure 14.6 and Table 14.1.

Question 2 If a certain application requires decimeter positioning accuracy, which GPS

http://www.navcen.uscg.gov/
http://www.navcen.uscg.gov/
https://www.gps.gov/
https://www.euspa.europa.eu/
https://igs.org/
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positioning modes can be considered? And for how long a time would we need to collect
measurements?

Answer 2 RealTime Kinematic (RTK) provides decimeter or even centimeter accuracy as
soon as the ambiguities can be fixed, which generally is (well) within 100 seconds of mea
surements, and even faster in postprocessing. PPP can also provide decimeter accuracy after
several minutes. DGPS can reach decimeter accuracy as well, but may considerable time
to allow for averaging (with static positioning only), for instance one hour. SBAS and stan
dalone GPS often do not reach decimeter accuracy even after one or several days (averaging
with static positioning), especially in the vertical component. An overview of the attainable
accuracies can be found in Figure 15.9.

Question 3 The principle of GPS satellite positioning and navigation consists of determin
ing the range from satellite to receiver through measurement of the signal traveltime. The
atomic clock in the satellite is perfectly on time. When the receiver clock is ahead of time by
0.1 𝜇s, by how much is the measured range to the satellite too long or too short?

Answer 3 From Eq. (13.2) we can see that clock error 𝛿𝑡𝑟 is positive, as the receiver clock
is ahead of time, hence 𝑡𝑟 > 𝑡. Next, with Eq. (13.3), and 𝑐𝛿𝑡𝑟 = 𝑏𝑟 = 30 m, we find that the
pseudorange 𝑝𝑠𝑟 is too long by 30 m (compared to the actual distance 𝑙𝑠𝑟).

Figure 16.5: Onedimensional GPS positioning (Question 4).

Question 4 The GPS positioning problem has been simplified to a single dimension. There
are two satellites A and B, and the user receiver is at R, see Figure 16.5. The positions of
the satellites are known, A is at 𝑥𝐴 = 0, and B is at 𝑥𝐵 = 10. The position of the user 𝑥𝑅 is
unknown. Two pseudoranges have been measured: 𝑝𝐴𝑅 = 9 and 𝑝𝐵𝑅 = 7. Determine the
position (coordinate) of the user at R.

Answer 4 Looking at Figure 16.5 we identify two geometric ranges, namely 𝑙𝐴𝑅 = 𝑥𝑅−𝑥𝐴
and 𝑙𝐵𝑅 = 𝑥𝐵 − 𝑥𝑅 (mind to define these distances to be positive). Then, with Eq. (13.3), we
formulate two observation equations:

𝑝𝐴𝑅 = 𝑙𝐴𝑅 + 𝑏𝑅
𝑝𝐵𝑅 = 𝑙𝐵𝑅 + 𝑏𝑅

which gives

𝑝𝐴𝑅 = 𝑥𝑅 − 𝑥𝐴 + 𝑏𝑅
𝑝𝐵𝑅 = 𝑥𝐵 − 𝑥𝑅 + 𝑏𝑅

and with the given satellite positions, we obtain

𝑝𝐴𝑅 + 𝑥𝐴 = 𝑥𝑅 + 𝑏𝑅
𝑝𝐵𝑅 − 𝑥𝐵 = −𝑥𝑅 + 𝑏𝑅

We have two equations with two unknown parameters, namely 𝑥𝑅 and 𝑏𝑅, which we can solve,
giving 𝑥𝑅 = 6 and 𝑏𝑅 = 3. The user position coordinate equals 𝑥𝑅 = 6, and we are typically
not interested in the receiver clock offset. It is easily verified that correcting the measured
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pseudoranges for the receiver clock offset yield the actual distances from the two satellites to
the receiver: 𝑝𝐴𝑅 − 𝑏𝑅 = 9 − 3 = 6 and 𝑝𝐵𝑅 − 𝑏𝑅 = 7 − 3 = 4.

Question 5 The GPS relative positioning problem has been simplified to a single dimen
sion. There is one satellite ‘sat’ (or just ‘s’) and it is visible at the local horizon. The receivers ‘1’
and ‘2’, and the satellite are all on a straight line (along the xcoordinate axis), see Figure 16.6.
The radiosignals from the satellite to the two receivers pass through the Earth’s atmosphere
(layer ‘atm’) and get thereby delayed; the delay, expressed in units of range, is denoted by
𝑑𝑠. This delay is unknown (but equal for the signals to both receivers). The satellite position
is known, 𝑥𝑠 = −20, and the position of receiver 1 as well 𝑥1 = 5. Compute the position
of receiver 2, 𝑥2, based on the pseudorange measurements 𝑝𝑠1 = 32 and 𝑝𝑠2 = 37. In this
case, you can again assume that all clocks run perfectly on time – there are no clock offsets
involved.

Figure 16.6: Relative positioning in one dimension (Question 5).

Answer 5 The pseudorange observation equation (13.3) needs to be adapted. There
is no clock offset involved at all, so parameter 𝑏𝑟 cancels, but now, we face an unknown
atmospheric delay 𝑑𝑠. Hence

𝑝𝑠1 = 𝑙𝑠1 + 𝑑𝑠
𝑝𝑠2 = 𝑙𝑠2 + 𝑑𝑠

Looking at Figure 16.6 we identify two geometric ranges, namely 𝑙𝑠1 = 𝑥1−𝑥𝑠 and 𝑙𝑠2 = 𝑥2−𝑥𝑠
(mind to define these distances to be positive). Then the two observation equations become:

𝑝𝑠1 = 𝑥1 − 𝑥𝑠 + 𝑑𝑠
𝑝𝑠2 = 𝑥2 − 𝑥𝑠 + 𝑑𝑠

where there are two unknown parameters, namely 𝑥2 and 𝑑𝑠. With the given measurements
and coordinates, this is easily solved, to yield 𝑥2 = 10 and 𝑑𝑠 = 7. Alternatively one could
take the difference of the two pseudorange measurements 𝑝𝑠2 − 𝑝𝑠1 = 𝑥2 − 𝑥1, which gives an
identical result for 𝑥2, and one is generally not interested in parameter 𝑑𝑠.
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17
Introduction

The goal of surveying is to gather information about the Earth, the Earth’s surface and its
topography. In order to gather information about phenomena and processes on Earth, we
take measurements by surveying and remote sensing. From these measurements we extract
the information needed to model the Earth’s surface and processes taking place on Earth.
Mostly we focus on geometric information, hence on ‘where things are’.

The measurements are taken in the real world and therefore start from physical principles.
The purpose of this part is to convey the fundamentals of measurements for surveying, in
cluding remote sensing. We present the concepts and principles of measurements, primarily
from a physics perspective.

Dutch historical perspective
Important discoveries and contributions in the fields of surveying and remote sensing were
made in the past by two Dutch scientists, at a close distance from Delft: Willebrord Snellius
from Leiden, and Christiaan Huygens from The Hague.

Figure 17.1: At left: portrait of Willebrord Snellius (15801626). Image taken from Wikimedia Commons [9].
Public Domain. At right: memorial plaque at Douzastraat 2a in Leiden, where Snellius lived. In the field of land
surveying Snellius carried out triangulation, and he invented the method of positioning by resection (in Dutch:
achterwaartse insnijding).

Willebrord Snellius, born Willebrord Snel van Royen (15801626), Figure 17.1, was an
astronomer and mathematician, and known in Englishspeaking countries as Snell [47]. His
name has been assigned to the law of refraction of light, though this law of refraction was
actually discovered much earlier. Snell’s law describes the relationship between the angles of
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Figure 17.2: At left, Christiaan Huygens (16291695), painting by Caspar Netscher (16391684), 1671, Haags
Historisch Museum. Image taken from Wikimedia Commons [9]. Public Domain. At right, mansion of the Huygens
family at Hofwijck, currently housing the Huygens museum in Voorburg.

incidence and refraction, when light is (or waves are) passing through a boundary between
two different isotropic media, such as water, glass and air. The law follows from Fermat’s
principle of least travel time. In Appendix G we review Snell’s law.

Christiaan Huygens (16291695) was a mathematician and physicist, Figure 17.2. Huygens
performed early telescopic studies of the rings of planet Saturn and discovered its moon Titan.
He wrote a first treatise on probability theory (‘Van reeckening in spelen van geluck’). His
invention of the pendulum clock was a breakthrough in timekeeping; time is the very basis
of many measurements in surveying and remote sensing today. In 1673, Huygens published
the ‘Horologium Oscillatorium sive de motu pendulorum’, his major work on pendulums and
horology. Huygens derived the formula for the period of an ideal mathematical pendulum. His
wave theory of light was eventually published in 1690 as ‘Traité de la lumière’ [48]. We return
to the subject of timekeeping — though with today’s means — in Section 21.2, on oscillators.

Overview of this part
This part serves as an introduction into the subject of remote sensing. Technical implemen
tation details and system specifications are not dealt with, nor are operational procedures in
practice.

First, the basic principles of the measurement of angle and distance are presented in
Chapter 18. Next, a wide range of measurement techniques for surveying and mapping is
presented, such as aerial stereophotogrammetry, ranging by means of laser, radar and sonar,
and subsequently imaging techniques, such as laser scanning, interferometric synthetic aper
ture radar and multibeam echo sounding.

While these chapters focus on geometric information, the last chapter of this part, Chap
ter 25, dedicated to optical remote sensing, covers radiometric information. Here the focus is
on ‘what kind of things are there’ and ‘how much is there’.

https://commons.wikimedia.org/wiki/File:Christiaan_Huygens-painting.jpeg
https://www.hofwijck.nl/


18
Measurements of geometry

Geometric information can be gathered through measurement of angle and distance. In this
chapter we discuss the basic principles and occurence of both these fundamental measure
ments in surveying and remote sensing. The last section, titled interferometry, covers the
measurement of a change in distance.

18.1. Measurement of angle
In this section we cover the theodolite, and also optical imaging for photogrammetry. They
are both based on the principle of measuring angles.

18.1.1. Theodolite
Measurements of azimuth and direction can be made (physically) by reading a ‘solid state’
scale in the desired direction. The instrument is basically a ring with markers which divide
the full 360 degrees (or 400 gon) in equal portions (pies), see Figure 18.1 at left. A (straight)
linear scale is made cyclic by ‘wrapping’ it around a circle (or cylinder), and the circumference
of the circle is thereby divided into equidistant parts.

The instrument is centered at the user/observer, and — relying on optical light — he or she
has to point the telescope of the theodolite into the desired direction (to the target object), cf.
Figure 4.2, and the scale of the device can be readoff mechanically/visually, similar to reading
a compass on a vessel in measuring the azimuth (bearing) to for instance a lighthouse.

An electronic theodolite today measures angles by means of electrooptical scanning of
digital codes (similar to barcodes) etched on a glass cylinder or disc within the instrument,
see Figure 18.1 at right. More precisely, the instrument can measure a direction to an object
of interest, as any direction over the full 360degrees range has a unique digital code in the
instrument. The resolution for highend equipment is in the order of a few microradians,
which is about 0.0001 degree or gon.

The theodolite and total station are covered in detail in Chapter 4.

18.1.2. Optical imaging: photo camera
With a camera, a threedimensional situation is mapped, or projected, onto a twodimensional
image (plane), using optical signals (light). Typically, available visible Sunlight is reflected by
the topography on the Earth’s surface and propagates through the lens and is subsequently
captured on a photo film (or sensor array). The lens is the central part of the camera. Optical
sensing is a passive system. The sensor is just sensing (recording amounts of reflected solar
radiation); the sensor does not broadcast any signal itself. The sensor can be at another loca
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Figure 18.1: At left: magnetic compass for hiking or sailing with a 360degreesscale divided in 2degrees portions.
At right: 360degrees disc divided in three rings, with each ring in total half of it being black and half white; in
this example directions are encoded using (only) 3 bits; when a full turn of 360 degrees is divided by 23 different
codes, this yields a 45 degrees resolution for the measurement of direction.

tion than the object or the topography to be surveyed; optical imaging can be done remotely
(optical remote sensing).

The most basic model of geometric projection for this imaging process holds for an in
finitesimally small lens, and is also referred to as the pinhole camera model (and serves as a
good approximation for the case with a finite sized lens, capturing distant objects (in principle
at infinity)). The projection is shown in Figure 18.2.

A point 𝑃 in 3D reality is projected onto the 2D image point 𝑝, in the image plane, through
the camera center point 𝐶, which is the (center of the) lens; point 𝐶 is the projection center.
The camera is an image sensor. In an actual camera, a mirror image is formed behind the
camera center (the socalled negative image), on photofilm (in the old days), or the image is
captured by an array of pixels (Charge Coupled Device (CCD), or Complementary MetalOxide
Semiconductor (CMOS)).

The corresponding positive image can be thought to stand in front of the camera (lens),
as shown in Figure 18.2. In three dimensions, the points 𝐶 (camera center), 𝑃 (object in the
terrain / topography), and 𝑝 (the image point, either in the negative, or positive image) all lie
on one straight line in space; these three points are collinear.

The distance between the camera center 𝐶 and the image plane is the focal distance
𝑓. Assuming that the camera center 𝐶 is the origin of the coordinate system, as shown in
Figure 18.2, and the image plane is 𝑍 = 𝑓 (the focal distance 𝑓 away from the lens), point
𝑃 with coordinates (𝑋𝑃 , 𝑌𝑃 , 𝑍𝑃) is mapped onto image point 𝑝 with coordinates 𝑥𝑝 = 𝑋𝑝 =
𝑓𝑋𝑃/𝑍𝑃, 𝑦𝑝 = 𝑌𝑝 = 𝑓𝑌𝑃/𝑍𝑃, and 𝑍𝑝 = 𝑓, see Figure 18.3 (carefully mind the difference in
indices between the small letter ‘p’ and the capital letter ‘P’). Coordinates 𝑥 and 𝑦 are image
coordinates (there is no 𝑧 coordinate); 𝑋, 𝑌, and 𝑍 represent terrain coordinates (sometimes
also referred to a world coordinates).

From these simple equations it is clear that the ratio of the focal distance 𝑓 and the distance
of the camera center to the terrain 𝑍𝑃, determines the scale of the photo (for the middle of the
photo), for instance, the larger 𝑍𝑃 (e.g. the higher the aircraft is flying), the smaller objects
get depicted in the photo. A small focal distance gives a wide field of view (wide angle), but
objects get depicted at small size in the photo.

The line through the camera center 𝐶, perpendicular to the image plane is the principal
axis of the camera (the 𝑍axis). The angle, at the camera center 𝐶, of the line 𝑃𝐶 with the
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Figure 18.2: The camera projects a threedimensional situation onto a twodimensional image (central projection).
Through the camera center (lens) 𝐶, the terrain point 𝑃 is mapped, or projected, onto the image point 𝑝 (in principle
no matter the distance PC). For convenience we consider here the virtual image, i.e. the positive photo in front of
the lens, rather than the actual (negative) image plane behind the lens.

Figure 18.3: Crosssection of the imaging geometry. Real world point 𝑃 (𝑋𝑃, 𝑌𝑃, 𝑍𝑃) is mapped onto image point
𝑝 (𝑥𝑝, 𝑦𝑝). The ratio of the focal distance 𝑓 and terrain coordinate 𝑍 determines the scale of the mapping. Point
𝑃 is assumed to lie in the 𝑌,𝑍plane.
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Figure 18.4: Positioning with the Global Positioning System (GPS) is an example of oneway ranging. Both satellite
and receiver are equiped with a clock, and the receiver measures the delay of signal arrival, i.e. the difference
between time of arrival at the receiver and time of transmission by the satellite. With perfect clocks, and in the
absence of error sources, distance 𝑙 can be directly measured.

principal axis, determines where — at what distance from the origin in the image — the point
is shown in the image. Hence, the measurement of direction, or angle, is actually the principle
underlying optical imaging. All objects located in the same ‘looking’direction, no matter their
distance to the lens, get depicted on the very same spot of the film, or the image (array).

The geometry of (optical) imaging is dealt with in the next chapter, Chapter 19 on pho
togrammetry, covering the central projection, the geometry of a single image, and also the
geometry of an imagepair (stereophoto). Optical remote sensing is further covered in Chap
ter 25.

18.2. Measurement of distance
In this section we introduce the principle of sensing from a geometric perspective, that is,
observing distance by measuring signal travel time. Next, we cover lidar, radar, and sonar,
and eventually touch upon imaging using these signals.

18.2.1. Sensing: using signals
Classically, a distance is measured by physically spanning a tape or chain along the distance
to be measured, from point A to point B, or, for measuring water depth, sounding originally
meant using a premeasured heavy rope or cable, lowered over the ship’s side until it touched
the seafloor. Today, distances are usually obtained by measurements of traveltime, using an
electromagnetic or acoustic signal (where electromagnetic signals also include optical signals).
A signal is sent by a transmitter to a target (receiver), and basically the time needed to
complete the travel from transmitter to receiver is measured, also referred to as the time
of flight. Multiplication with the propagation speed of the signal yields the measurement of
distance. Measuring distances is then basically a matter of timing. Chapter 20 covers the
measurement of distance in further detail, distinguishing between measuring the traveltime
using a pulse signal, and measuring distance by means of phase comparison (based on a
continuous wave signal).

Distance measurements come in two flavours: oneway and twoway ranging. For one
way ranging two devices are needed: a transmitter and a receiver, and they need to have their
clocks synchronized, in order to properly measure the signal traveltime. Satellite navigation
is likely the most popular, and wellknown example of oneway ranging, see Figure 18.4. GPS
(Global Positioning System) satellites broadcast radiosignals, and a user on Earth (either on
foot, in a car, on a vessel, etc.) receives the signal, and determines the traveltime, which can
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Figure 18.5: Distance measurement by twoway ranging. The signal is sent by the transmitter at left, reflected
back by the object at right, and received again by the instrument at left. The signal roundtrip traveltime is
measured, which is directly proportional to twice the distance, 2𝑙.

Figure 18.6: Both a laser distometer (at left) and a total station (at right) use twoway ranging, generally by
means of a laser. The laser distometer (shown here) uses red laser light with a 635 nm wavelength for ranging
with millimeter precision, on distances up to 30 meters. The distance is measured optically, using a pulsed laser as
an emitter, and a photo detector as a receiver (integrated in the same device; the twoway traveltime of the laser
pulsse is measured). Pulses, with a duration ranging from a few to several tens of nanoseconds, are repeatedly
transmitted, with a repetition rate in the order of kHz. The laser light of the distometer reflects directly on the
object of interest. With a total station often a reflector is used, as shown at right.

be converted into a measurement of distance, see Part III. GPS is a multiuser system: each
satellite transmits a signal down to Earth and the receivers only ‘listen’. In principle, there can
be an unlimited number of users.

With twoway ranging, the signal roundtrip is timed, see Figure 18.5. The signal, after
being reflected by the target, returns to the transmitter. The measurement of distance follows
from division of the signal roundtrip time by two, and multiplication by the travel speed.
Typically, transmitter and receiver are integrated into a single device, also referred to as a
transceiver. Two examples are shown in Figure 18.6.

Twoway ranging allows for remote measurements, this means, provided that the target
object can reflect sufficient signal back to the receiver, the target object does not need to be
accessed. The distance to the object can be measured from another location, e.g. from an
aircraft flying over the terrain.

18.2.2. Lidar
The measurement of distance by a total station typically relies on a microwave or infrared
signal, or laser, transmitted by the device, and reflected by a prism reflector (a glass corner
cube prism), or the object under survey, cf. Figure 18.6. This functionality is referred to as
Electronic Distance Measurement (EDM) equipment. The distance is generally measured as
the traveltime of a laser pulse, or through phase comparison, for the latter also see Section
4.2.

A laser distometer is an obvious example of twoway ranging. It uses a laser signal (Light
Amplification by Stimulated Emission of Radiation  LASER). A laser device emits light coher
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ently (a single frequency, i.e. a single color of light), and this allows the light to be focussed
into a narrow beam. An example of a longrange laser (airborne, or spaceborne) system
is laser altimetry (and the laser terrain profiler). The signal — typically a short pulse — is
reflected by the sea or Earthsurface. The signal traveltime is a measure for the distance.

A laser scanner is a device, setup like a total station, which can take (twoway) distance
measurements in many different directions, shortly after each other, by employing one or
two moveable mirrors to steer the laser beam. For every object point in the vicinity of the
laser scanner, distance and direction are measured together. The whole scene around the
laser scanner can be surveyed in one go, and yields a 3D ‘image’ of the environment (a point
cloud).

Laser ranging and scanning are applications of ‘lidar’, which stands for: light detection and
ranging, similar to the acronym ‘radar’, covered next. A laser signal is sent, and the purpose
is to detect (and measure) the echo from an object. Laser altimetry and scanning are further
discussed in Chapter 22.

18.2.3. Radar
The acronym radar stands for RAdio Detection And Ranging. Radar, with originally a military
background, was developed to detect the presence of objects and determine their range (po
sition). A (microwave) radio signal (pulse), transmitted in a particular direction, is reflected
by an object (also referred to as a backscatterer), and the (twoway) traveltime of the signal
is measured, which yields a full measurement of position (in 2D or 3D), actually similar to the
laser scanner. With a rotating antenna, the full horizon can be sweeped and consequently
‘mapped’, as done in Air Traffic Control (then implying a measurement of direction as well).
Additionally, the amplitude of the reflected signal (intensity of the echo) may contain infor
mation about the type of object, after its reflection properties. Radar is an active system: a
signal needs to be transmitted, in order to ‘illuminate’ the object to be sensed.

Radio signals can be used, in a setup very similar to laser altimetry. Also radar altimetry
measures the distance between an aircraft or satellite and the surface of the sea or the Earth
which reflects the signal.

As radar is based on radio signals, radar may not be able to ‘look through’ a metal mesh,
like a fence, whereas laser will be able to do, and, similarly for a window, radio waves may be
reflected, whereas laser (light) may propagate through. On the other hand, laser ranging and
scanning can be seriously hindered by rain and fog, whereas radar may ‘look through’ these,
virtually unlimited. Radar may, to some extent, depending on the medium, even propagate
through objects. Basic propagation phenomena, like reflection and refraction, are reviewed in
Appendix G.2.

Radio ranging is further discussed in Chapters 20 and 23.

18.2.4. Sonar
Next to optical and radiosignals, also acoustic signals can be used similarly: the acronym
sonar stands for SOund NAvigation and Ranging. Sonar is applicable in air and water, and
subsurface as well, but not in space (vacuum), due to the absence of particles needed for
the propagation of the pressure variations carrying the sound.

Chapter 24 is dedicated to acoustic sounding.

18.2.5. Imaging
So far, we discussed the measurement of distance between two discrete points. Though
one should realize that using even a very narrow laser beam from an aircraft flying at 1
kilometer height, yields a footprint on the Earth’s surface of a few decimeter already, and
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Figure 18.7: Imaging by sidelooking radar. From an aircraft or satellite a radio pulse is transmitted sidewards
down to the Earth’s surface. The spatial separation in the terrain is preserved in the image by difference in time of
signal return (indicated by the arrows); topography or objects close by yield early reflections, objects far off late
ones. In this image both arrows represent an equal travel time; the reflection on the ground close by is nearly
back at the sensor, whereas the reflection on the ground far off just started its return trip.

from a satellite this could be an area with a diameter of tens of meters, hence, not really a
discrete point anymore (we return to this observation in Section 24.2). Radio signals, as for
instance used with radar, are typically broadcast in a much wider beam (in principle a narrow
beam is possibly, but at the complication of a huge antenna). Hence, with radio signals (and
acoustic signals as well), one typically illuminates a big part of the scene at once (with a single
signal transmission).

Instead of detecting objects in specific directions (possibly by a moving or rotating an
tenna), a fixed antenna can ‘look’ sideways and illuminate a whole area in one go, see Fig
ure 18.7. Only one short pulse is transmitted (at a time), and reflections are received during
a certain time interval: the full response is recorded, with all reflections/echoes. An object
nearly underneath the sensor gives a short traveltime, and an object far away (sidewards)
results in a longer traveltime. Objects at the same distance to the sensor get depicted on
the very same spot in the ‘image’, no matter their angle (‘looking’ direction) within the signal
beam (an example is given in Section 20.4). Radar imaging is further discussed in Chapters
20 and 23.

From an aircraft or satellite, images are obtained stripwise of ground areas located adja
cent to the flight line, in forward direction. Together with sidelooking radar this yields, like
photography, a twodimensional image of the Earth’s surface and its topography.

18.2.6. Array of receivers: angle
Finally, we mention that instead of a single receiver, an array of receivers can be used (though,
unlike with optical imaging, there is no lens involved). By using the time of arrival as measured
by one of the receivers, the distance can be determined, as usual. But, by measuring the
traveltime difference between multiple receivers, and knowing the layout of the receivers,
one can also determine the angle of arrival of the signal, see Figure 18.8, for a simple two
dimensional representation; the transmitter Tx is assumed to be at large distance here.

18.3. Interferometry
Different distances, or changes in distance can be observed with an electromagnetic signal at
a certain frequency (typically light), and this is the concept of the (Michelson) interferometer.

A light source, in principle coherent, for instance a laser, provides a carrier wave signal,
that is split in two directions. One light beam goes directly to an optical sensor. The other
beam goes to a (movable) reflector, at right, and is then returned to the sensor at bottom,
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Figure 18.8: The angle of the incoming signal from signal transmitter Tx can be determined by measuring the
traveltime difference between two receivers Rx1 and Rx2. The traveltime difference of the signal yields distance
𝑑, and when distance 𝑏 between the two receivers is known, the angle of arrival Θ follows from cosΘ = 𝑑

𝑏 .

source

sensor

reflector

distance

Figure 18.9: Diagram of a laser interferometer. Part of the light (in green) is reflected by the first mirror directly
into the sensor; the other part takes a detour to the reflector at right.

see Figure 18.9. The sensor, a photo detector, makes a phase comparison between the direct
signal and the signal that made the detour to the (distant) reflector.

The phase difference between the two waves is the result of the difference in path length
(in this case the detour to the reflector and back). A path length difference of one wavelength
(apart from an integer number of wavelengths) produces a phase difference of 360∘, which is
equivalent to no phase difference at all (constructive interference, the resultant amplitude is
the sum of the amplitudes of the two individual waves). A path length difference of one half
wavelength produces a 180∘ phase difference (destructive interference; resultant amplitude
is the difference of the two individual amplitudes, which is, when these are equal, just zero).
Observing a maximum amplitude implies that the measured (two way) distance is longer than
the direct signal’s path, by a multiple of the wavelength.

A twoway distance can be measured, as indicated in Figure 18.9, but applicability in
practice lies usually in measuring (very precisely) a difference in distance, by moving the
reflector between two distinct positions (indicated by the dashed line). In the classical optics
application, a pattern of fringes of light is observed when the reflector is moved (and the
sensor counts the light/dark occurrences during the movement). The fringes are caused by
constructive and destructive interference of the two waves arriving at the sensor. Such a
pattern, similarly produced by the classical twoslit experiment is shown in Figure 18.10.

Changes in distance can be measured very precisely (in the order of 1 𝜇m) by using
directly the wavelength of (optical) light. Laser interferometers have a limited working range
and are used in laboratories or with special construction works. The Väisälä interference
comparator, with white light, was, and is used to calibrate invar wires for instance for the
precise determination of the lengths of so called standard baselines in terrestrial geodetic
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Figure 18.10: Interference pattern from classical twoslit experiment in physics, taken from image by Pieter Kuiper
 own work, Public Domain, Wikimedia Commons [9].

networks.
Rather than using light, the principle of interferometry is also applicable with radar (with

centimeter  decimeter wavelengths). This allows to measure small changes on the Earth’s
surface, in the order of millimeters, by means of radar remote sensing, through repeated pass
overs of a satellite. Section 23.2 covers radar interferometry with application in measuring
deformations.

This principle of interferometry is also applied in measuring changes of length in fiber optic
cables, for instance in constructions expected to be susceptible to deformation. The speed of
light in optical fiber is about 2 ⋅ 108 m/s, that is roughly 2/3 of the speed of light in vacuum,
see Chapter 21.

18.4. Exercises and worked examples
Below follow two exercises on measuring distances by means of laser light.

Question 1 How short does a laser light pulse need to be, in order to be able to observe
two objects fully separated, which are located within the same footprint, directly underneath
the sensor, and which have a heightdifference of 15 m.

Answer 1 The word ‘separately’ implies that the reflection received from the first object
shall not overlap with the reception of the reflection from the second object. A 15 m height
difference translates into a 30 m traveltime difference (twoway traveltime). The laser pulse
is travelling at the speed of light (in vacuum), about 3 ⋅ 108 m/s, and hence, 30 m, divided
by the speed of light yields 10−7 s, or 0.1 𝜇s. A pulse of 1 𝜇s time duration is — through the
speed of light (in vacuum) — equivalent to a distance of 300 m in range.

Question 2 An interferometer is operating at a wavelength of 500 nm. Changes in distance
can be observed with a precision of 𝜎 = 1 𝜇m. How precise can the fringe be observed? That
is, the precision of 1 𝜇m is equivalent to what part of a fringe (cycle), or how many fringes
(cycles)?

Answer 2 The difference in distance has a precision of 1 𝜇m, or 1000 nm. Therefore the
actual change in distance (observed by measuring/counting the fringes) is 2000 nm (as the
light signal makes a twoway trip between instrument and mirror). One full fringe (lightdark
cycle) corresponds to a change in the optical path length of one wavelength, hence 500 nm.
The measurement precision in terms of fringes is 2000/500=4; the fringecounting is precise
to a standard deviation of 4 fringes.

https://commons.wikimedia.org/w/index.php?curid=9494550
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Photogrammetry

The discipline of extracting metric information from photographs is called photogrammetry.
Photogrammetry is the art, science and technology of obtaining information about physical
objects and the environment, through the process of recording, measuring and interpreting
photographic images, today, mostly digital images. The traditional, and largest, application
of photogrammetry is to extract topographic information (e.g. maps and terrain models) from
aerial images. Figure 19.1 shows an example of an aerial photograph. Actually a socalled
orthophoto is shown here, which is a geometrically corrected photo (using a ground surface
model) as to view the terrain everywhere from directly overhead. In photography a sensing
array is used to capture visible light, covering wavelengths of 400 nm (blue) to 700 nm (red).

Figure 19.1: Example of an aerial photograph of a part of the TU Delft campus, taken April 26th 2021, with a Vexcel
Ultracam Eagle Mark 3 camera (450 Megapixels), with a focaldistance of 𝑓=210 mm, and a flying height of slightly
over 4 km. Shown is an orthophoto with a ground pixel resolution of 8 cm. Aerial photographs are jointly acquired
in the Netherlands, countrywide, by a cooperation of Dutch governmental bodies, led by het Waterschapshuis and
het Kadaster, for instance for mapping purposes through stereophotogrammetry (for example the Basisregistratie
Grootschalige Topografie (BGT)). Photo obtained through Beeldmateriaal Nederland [49] under a CC BY 4.0 license.
From 2021 on, these aerial photos are available as open data.
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Figure 19.2: Optical imaging: Cartesian camera coordinates 𝑥, 𝑦, 𝑧, and Cartesian ground or terrain coordinates
𝑋, 𝑌, 𝑍. The photoimage plane is parallel to the 𝑥𝑦 plane, and the (positive) image plane is at 𝑧 = −𝑓 (focal
distance). The blue shaded volume shows the field of view of the camera.

In this chapter, image geometry is related to actual terrain geometry, through the central
projection. Then we consider the fact that (tall) objects and relief (height differences, like dikes
and hills) look like laying backward in the image, a phenomenon called relief displacement.
Next, we touch upon stereophotogrammetry, that is, the reconstruction of threedimensional
terrain geometry from a pair of photos. A first step with the underlying mathematics of
photogrammetry is taken only in the optional Section 19.4.

19.1. Central projection
In Chapter 18 we assumed, for simplicity, that the camera center (point C) was the origin,
not only of the camera system, but also of the terrain coordinate system, cf. Figure 18.2. In
practice the camera center position  at the time of capturing the image  is not known, in
the terrestrial coordinate system, think for instance of a camera in an aircraft flying over the
terrain. And also the orientation of the camera (or, attitude) with respect to the terrain is not
known. In Chapter 18 the orientation of the camera, again for simplicity, was taken such that
the image plane is aligned with the 𝑋𝑌plane of the ground coordinate system.

In practice a relation needs to be established between the terrain coordinates (𝑋, 𝑌, 𝑍),
and the image (or camera) coordinates (𝑥, 𝑦, 𝑧), see Figure 19.2. This is referred to as the
exterior orientation of the photo. The image coordinate system is fixed to the camera, and
the (central) projection center (center of the lens) is the origin. In Figure 19.2 the 𝑧axis lies
along the principal axis of the camera.

One can measure position and orientation of the camera (in the ground coordinate sys
tem) during flight, and, establish in the terrain socalled ground control points, which can be
well identified in the image, and have known coordinates in the desired terrestrial coordinate
system, so that one can reconstruct the position and orientation of the camera (in the ground
coordinate system). The process of linking image coordinates to position coordinates of ob
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Figure 19.3: Single image: point P is the bottom of the object in the terrain, and mapped to point p in the photo.
The top of the object, point Q, is mapped onto point q in the image. Looking from the center of the photo, one can
see that the object, for instance a tall tower, leans back in the image (radially outwards from the image center).
In the image it looks like the tower has been pushed over, and is now lying backwards on the ground. The tower,
which stands vertically upright in the terrain, shows by a certain length in the image and this is referred to as
relief displacement. By measuring the displacement, distance 𝑥𝑞 −𝑥𝑝 in the photo, one can determine the height
𝑍𝑃 − 𝑍𝑄 of the object PQ in, or above the terrain.

jects in the terrain is often called georeferencing. It is about ‘retrieving where the image was
taken’.

The camera coordinate system can be linked to a coordinate system adopted on the
ground, in use for surveying and mapping, generally through a three dimensional similar
ity transformation, that is, using one scale parameter, three translation parameters, and three
rotation parameters (see Chapter 28). This is further detailed in the optional Section 19.4.

By using a calibrated camera, one assures to have a known focal distance 𝑓, the image
plane perpendicular to the principal axis of the camera, and the middle of the image (photo)
on the principal axis. This concerns the interior orientation of the photo. We assume also that
we measure positions of objects depicted in the photo directly in the photo/camera coordinate
systems (𝑥, 𝑦, 𝑧). The interior orientation of the photo is the step to correct for lens distortion
and distortions in the image array (if any).

Then one will be able to distil, from the image, useful geometric information about the
topography.

In the following two sections we take, for pedagogical purposes, again a simple approach,
using basically the same coordinate system for both terrain and camera, and only in the
optional Section 19.4 we cover the exterior orientation of the camera.

19.2. Relief displacement
In this section we consider the retrieval of metric information from a single image. We do so
again by means of a simple example, in which the camera position and orientation are known.
By taking a measurement in the photoimage, specifically the length of an object as it shows
in the image, we determine the actual height of the object in the terrain.

The setup of the example is shown in Figure 19.3. For convenience we show the (negative)
image in the camera, rather than the positive image (photo). We use a coordinate system
similar to the one in Chapter 18, Figure 18.2. And we consider the vertical 𝑋𝑍 crosssection
of the situation (𝑌 = 0). The origin is the position of the camera center C. The positive 𝑍axis
is pointing downwards. The image plane is, for simplicity, nicely aligned with the terrain.

Using the central projection for point P, we consider triangle CC’P, and its image equivalent
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Ccp, both with angle 𝛼. And we consider point Q, with triangle CC’Q’, and its image equivalent
Ccq, both with angle 𝛽. We have

𝑋𝑃
𝑍𝑃

=
𝑥𝑝
𝑓 and

𝑋𝑄′
𝑍𝑃

=
𝑥𝑞
𝑓

which yields

𝑋𝑄′ − 𝑋𝑃 =
𝑍𝑃
𝑓 (𝑥𝑞 − 𝑥𝑝)

where 𝑓
𝑍𝑃
is the photo scale.

Next, we consider triangle QPQ’ and triangle Ccq (which has the same shape), and with
tan 𝛾 we obtain

𝑍𝑃 − 𝑍𝑄
𝑋𝑄′ − 𝑋𝑃

= 𝑓
𝑥𝑞

and combining the two results leads to

𝑍𝑃 − 𝑍𝑄 =
𝑍𝑃
𝑥𝑞
(𝑥𝑞 − 𝑥𝑝) (19.1)

which says that, knowing the flying height 𝑍𝑃 and measuring the positions of the bottom 𝑥𝑝
and top 𝑥𝑞 of the tower in the image, one can determine the height of the object in the terrain
𝑍𝑃 − 𝑍𝑄 (i.e. the difference in vertical coordinates of points P and Q).

In the next section we cover the subject of threedimensional object reconstruction using
two images. With (19.1) it seems that we can reconstruct threedimensional information from
just a single image. Mind however that with Figure 19.3, we made some simplifications; we
assumed that the camera was pointing straight down, onto a flat, level surface, with tower
PQ standing perfectly upright.

With aerial photogrammetry one generally takes photos straight down, as well as possible.
In computer vision one uses the perspective view, as a result of the central projection, to
extract geometric information, exploiting the fact that parallel lines in reality will meet at
infinity, in the socalled vanishing point, in the photo. This subject is however beyond the
scope of this chapter.

19.3. Differential parallax
By taking at least two images of an object (or a piece of the Earth’s surface), and reconstructing
the position and orientation of the camera at times of photo capture, a threedimensional
model of the object can be obtained.

The underlying geometric principle basically is an intersection with angles, as shown in
Figure 19.4 at left, as a twodimensional vertical crosssection of an aircraft taking aerial
photographs of the terrain. When angles 𝛼1 and 𝛼2 are obtained (reconstructed) from the
photoimages (for simplicity the camera is assumed to look straight down here), and the
camera positions are given, the position of point P in the terrain can be computed. Similarly
the intersection with two measurements of azimuth is covered in Section 9.7.2.

The two photo fragments in Figure 19.4 illustrate relief displacement and differential par
allax. These illustrations are details of two of the aerial photos shown in Figure 19.9.

A simple example of extracting 3D geometric information from a pair of partly overlapping
photos is shown in Figure 19.5 (again we show the vertical XZ crosssection of the situation).
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Figure 19.4: At left the principle of measuring angles 𝛼1 and 𝛼2, in order to determine the position of point P
(forward intersection). Relief displacement is clearly visible in the photo in the middle, as one can see the West
facade of the white building; the building is ‘laying back’ in SouthEast direction as the camera position, when
capturing this photo, is 450 m to the NorthWest of this building. Relief displacement takes place radially outward
from the image center. The photo at right shows virtually no relief displacement of this building, as the camera
was nearly straight overhead when taking this photo. The different perspective of the same object in these two
photos illustrates the differential parallax. Photos obtained through Beeldmateriaal Nederland [49] under a CC BY
4.0 license.

Q

P Q!

┌

└
Q!

└

² ¹C!¹ C!²

C²
C

¹

q
¹

p
¹

q
²

p
² ²

C!²

"
¹"

Figure 19.5: Two images: the same object PQ is pictured in two adjacent images, p1q1 in image 1, and p2q2 in
image 2. Due to a different camera position with respect to the object, the displacement of the tower PQ in the
two images is different. By measuring the differential parallax, and knowing the flying height 𝑍𝑃, and the change
in position of the camera between the two images 𝑋𝐶2 −𝑋𝐶1 , one can determine the height of the object 𝑍𝑃 −𝑍𝑄.

https://opendata.beeldmateriaal.nl/
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Objects show up at different locations in the images, caused by a change in camera position;
this is parallax.

For the photo at left (with projection centre C1) we can use the relief displacement
Eq. (19.1)

𝑍𝑃 − 𝑍𝑄 =
𝑍𝑃
𝑥𝑞1
(𝑥𝑞1 − 𝑥𝑝1) =

𝑍𝑃(𝑥𝑞1 − 𝑥𝑝1)
𝑥𝑝1 + (𝑥𝑞1 − 𝑥𝑝1)

Now, we note that the distance from C′2 to P, plus the distance from C′1 to C
′
2 together, equals

the distance from C′1 to P in the terrain. And this relation also holds in the photo (just scaling
these distances by 𝑓

𝑍𝑃
), hence 𝑥𝑝2 + 𝑥𝑐′2 = 𝑥𝑝1 , where 𝑥𝑝2 is measured in the right photo, and

𝑥𝑝1 and 𝑥𝑐′2 in the left image, so that the above equation becomes

𝑍𝑃 − 𝑍𝑄 =
𝑍𝑃(𝑥𝑞1 − 𝑥𝑝1)

𝑥𝑝2 + 𝑥𝑐′2 + (𝑥𝑞1 − 𝑥𝑝1)

And also for the photo at right (with projection centre C2) we can use the relief displace
ment Eq. (19.1).

𝑍𝑃 − 𝑍𝑄 =
𝑍𝑃
𝑥𝑞2

(𝑥𝑞2 − 𝑥𝑝2) =
𝑍𝑃(𝑥𝑞2 − 𝑥𝑝2)

𝑥𝑝2 + (𝑥𝑞2 − 𝑥𝑝2)

Setting the two equations (one for the photo left, and one for the photo right) equal

(𝑥𝑞1 − 𝑥𝑝1)
𝑥𝑝2 + 𝑥𝑐′2 + (𝑥𝑞1 − 𝑥𝑝1)

=
(𝑥𝑞2 − 𝑥𝑝2)

𝑥𝑝2 + (𝑥𝑞2 − 𝑥𝑝2)

and solving for 𝑥𝑝2 yields

𝑥𝑝2 =
𝑥𝑐′2(𝑥𝑞2 − 𝑥𝑝2)

(𝑥𝑞1 − 𝑥𝑝1) − (𝑥𝑞2 − 𝑥𝑝2)

Substituting this in the equation for the relief displacement in the photo at right, we obtain,
after some manipulation,

𝑍𝑃 − 𝑍𝑄 =
𝑍𝑃((𝑥𝑞1 − 𝑥𝑝1) − (𝑥𝑞2 − 𝑥𝑝2))
𝑥𝑐′2 + ((𝑥𝑞1 − 𝑥𝑝1) − (𝑥𝑞2 − 𝑥𝑝2))

(19.2)

The term (𝑥𝑞1 −𝑥𝑝1)− (𝑥𝑞2 −𝑥𝑝2) which appears in both the numerator and the denominator,
is the relief displacement in the left image, minus the relief displacement in the right image.
And, it equals (𝑥𝑝2 −𝑥𝑝1) − (𝑥𝑞2 −𝑥𝑞1), which is the difference of the parallax, due to moving
the camera, between the two points P and Q. In fact we are using here a stereophoto, from
which threedimensional geometry can be reconstructed, much similar to the way humans and
animals perceive threedimensional geometry. In this way threedimensional terrain models
can be created.

The distance 𝑥𝑐′2 , also appearing in (19.2), can be measured in the photo. Point c2 is the
middle of the right photo. And in the left photo, the corresponding point can be found, by
identifying the same terrain point, indicated by the dotted line, in this photo — this is point
c′2; and the distance from this point to the middle of the left photo can be measured, being
𝑥𝑐′2 .

Mind that if one image is taken from the left side of the object, and the other image from
the right side, the differential parallax (𝑥𝑞1−𝑥𝑝1)−(𝑥𝑞2−𝑥𝑝2) equals the sum of themagnitudes
of the displacements, as the two displacements are on opposite parts of the 𝑥coordinate axis.
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Figure 19.6: The camera coordinate system (𝑥, 𝑦, 𝑧) and the terrain coordinate system (𝑋, 𝑌, 𝑍) are related through
a threedimensional similarity transformation, involving a translation over vector (𝑋𝐶, 𝑌𝐶, 𝑍𝐶), and three rotations,
angles 𝜔, 𝜑 and 𝜅. Next a scaling 𝜆 applies, to depict the terrain scene into the image. Terrain point 𝑃 with
coordinates (𝑋𝑃, 𝑌𝑃, 𝑍𝑃) gets depicted at coordinates (𝑥𝑝, 𝑦𝑝) in the image, which is at focal distance 𝑓 from the
lens (𝑧𝑝 = −𝑓); the positive photo is shown here.

19.4. Terrain  camera transformation [*]
In the previous two sections we extracted geometric information about the terrain from a single
image, and a pair of images, respectively. We did so, using a simplified example. The general
theory for relating geometric information about the terrain to image geometry, is covered in
this section; this concerns the socalled exterior orientation of the camera. For an indepth
coverage of the subject, the reader is referred to e.g. [50].

Using the threedimensional similarity transformation from Section 28.3, one can transform
the (source) terrain coordinates (𝑋𝑃 , 𝑌𝑃 , 𝑍𝑃), cf. Figure 19.6, of point 𝑃, into the corresponding
(target) camera coordinates (𝑥𝑝, 𝑦𝑝, 𝑧𝑝):

(
𝑥𝑝
𝑦𝑝
𝑧𝑝
) = 𝜆𝑅1(𝜔)𝑅2(𝜑)𝑅3(𝜅)⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

𝑅
((

𝑋𝑃
𝑌𝑃
𝑍𝑃

) − (
𝑋𝐶
𝑌𝐶
𝑍𝐶

))

where we took Ω𝑥 = 𝜔, Ω𝑦 = 𝜑 and Ω𝑧 = 𝜅. Mind that (𝑋𝐶 , 𝑌𝐶 , 𝑍𝐶) refers to the origin of
the target coordinate system (camera), expressed in the source coordinate system (terrain)
— this is translation vector 𝑡.

With the rotation angles defined as in Figure 19.6, the 3by3 rotation matrix 𝑅 (cf. (28.9)
and (28.11)) becomes

𝑅 = (
𝑅11 𝑅12 𝑅13
𝑅21 𝑅22 𝑅23
𝑅31 𝑅32 𝑅33

)
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Figure 19.7: Aerial stereophotogrammetry: adjacent images within one strip typically have a 60% overlap. Be
tween strips this is typically 20%30%.

𝑅 = (
cos 𝜅 cos𝜑 sin 𝜅 cos𝜑 − sin𝜑

cos 𝜅 sin𝜑 sin𝜔 − sin 𝜅 cos𝜔 sin 𝜅 sin𝜑 sin𝜔 + cos 𝜅 cos𝜔 cos𝜑 sin𝜔
cos 𝜅 sin𝜑 cos𝜔 + sin 𝜅 sin𝜔 sin 𝜅 sin𝜑 cos𝜔 − cos 𝜅 sin𝜔 cos𝜑 cos𝜔

)

Through the above equation, and disregarding the scale factor 𝜆, we relate the coordinates
of the terrain point 𝑃 in the terrain coordinate system, to the coordinates in the camera
coordinate system.

The last step is to scale from the point in the terrain 𝑃 to the corresponding point in
the image 𝑝 (in the camera system). This is achieved by demanding that the resulting 𝑧𝑝
coordinate, equals the focal distance: 𝑧𝑝 = −𝑓, cf. Figure 19.6. This — implicitly — determines
the value for scale factor 𝜆.

However, as in the image, we are interested only in twodimensional coordinates, we
eliminate the scale factor 𝜆 by dividing the expressions for 𝑥𝑝 and 𝑦𝑝 by the one for 𝑧𝑝, and
eventually bringing 𝑧𝑝 = −𝑓 to the right hand side. The result reads:

𝑥𝑝 = −𝑓
𝑅11(𝑋𝑃 − 𝑋𝐶) + 𝑅12(𝑌𝑃 − 𝑌𝐶) + 𝑅13(𝑍𝑃 − 𝑍𝐶)
𝑅31(𝑋𝑃 − 𝑋𝐶) + 𝑅32(𝑌𝑃 − 𝑌𝐶) + 𝑅33(𝑍𝑃 − 𝑍𝐶)

𝑦𝑝 = −𝑓
𝑅21(𝑋𝑃 − 𝑋𝐶) + 𝑅22(𝑌𝑃 − 𝑌𝐶) + 𝑅23(𝑍𝑃 − 𝑍𝐶)
𝑅31(𝑋𝑃 − 𝑋𝐶) + 𝑅32(𝑌𝑃 − 𝑌𝐶) + 𝑅33(𝑍𝑃 − 𝑍𝐶)

which are the common equations for the central projection in photogrammetry. They relate
the terrain coordinates of object P to the coordinates of this object in the image. They are
also known as the collinearity equations, as discussed with Figure 18.2.

19.5. Aerial stereophotogrammetry
The common, and most frequently used way of acquiring large scale topographic maps and
threedimensional Digital Surface Models (DSM) is through aerial stereophotogrammetry. The
threedimensional geometry of objects and topography on the Earth’s surface can be recon
structed through stereophotogrammetry as shown in Figure 19.5; (at least) two photos of
the same scene as needed. Or, more precisely: any object to be mapped needs to appear in
at least two photos.

An important step in processing the images for this purpose is feature matching, i.e. finding
the same object (point) in two, or more adjacent images.
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Figure 19.8: Example of flight trajectory to map the TU Delft area through stereophotogrammetry, using the
principle of Figure 19.7. A 7 km by 7 km area is shown. The area is flown stripwise, and the parallel tracks are
about 1.2 km apart (turns of the aircraft are not shown realistically). With a flyingheight of over 4 km, the foot
print of one photo on ground is typically about 1.3 km x 2 km. The background map is taken from OpenStreetMap
(OSM), ©ȮpenStreetMap contributors [51], cf. Appendix J.

Figure 19.9: Example of three overlapping photos in one strip, for the purpose of mapping the TU Delft campus
area through stereophotogrammetry. The photos have been taken with a Vexcel Ultracam Eagle Mark 3 camera
(450 Megapixels), with a focaldistance of 𝑓=210 mm, at a flying height of slightly over 4 km. Photos obtained
through Beeldmateriaal Nederland [49] under a CC BY 4.0 license.

https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://opendata.beeldmateriaal.nl/
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In order to survey an area through aerial stereophotogrammetry, images are taken with
typically a 60% overlap along the flight direction, as shown in Figure 19.7. In this way there
is still 20% overlap between photo 𝑖 and photo 𝑖 + 2.

The area is then flown with parallel flight strips, as shown in Figure 19.8, so that the
sideward overlap is about 20%30%. Such flights are typically carried out in early Spring as
to avoid objects to be mapped being occluded by vegetation (no leaves on trees yet).

As an example three overlapping photos are shown in Figure 19.9, of the TU Delft campus,
acquired in Spring 2021. The aircraft was flying over Delft forth and back, in WestEast
direction, as shown in Figure 19.8. The photos, as shown here in one strip, are taken about
250 m apart. Note that the photos show West up. The A13 Rotterdam  The Hague highway
can be seen at bottom.

19.6. Exercises and worked examples
This section contains two exercises on photogrammetry.

Question 1 An aircraf equipped with a photocamera is flying — at a 500 m height —
over the Earth’s surface. Directly underneath the camera, we would like to see/identify single
30x30 cm tiles in the pavement (assuming ideal imaging conditions). What should be the
pixelsize in the CCD or CMOS array in the cameraplane, in order to meet this demand (one
pixel covering one tile)? The camera has a focal distance of 5 cm.

Answer 1 Using the equation for the central projection, for instance in the 𝑌coordinate
direction, we have 𝑦𝑝 =

𝑓𝑌𝑃
𝑍𝑃
, with 𝑓=0.05 m, and 𝑍𝑃=500 m. The size of the tile (in reality) is

𝑌𝑃=0.30 m (spatial resolution), and hence 𝑦𝑝 =
0.05⋅0.3
500 = 3 ⋅ 10−5 m, or 30 𝜇m.

Figure 19.10: Stereophotogrammetry at home: the same scene is pictured twice, with a smartphone camera
(Samsung J5 2018  SMJ530F). The camera was held (approximately) level, at a ‘flying height’ of 60 cm.

Question 2 Figure 19.10 shows two photos, taken in a DoItYourself photogrammetry
setup at home, according to Figure 19.5. The camera was held approximately level, at a
‘flying height’ of 60 cm. Due to different camera positions the relief displacement of both
boxes is clearly different in these two images. The image at left clearly shows much more of
the frontsides of the boxes, than the image at right. Determine, by measurements of relief
displacement in these two photos, the height of both boxes.

Answer 2 The solution to this problem lies in Eq. (19.2). The flying height is given 𝑍𝑃 =
60 cm, and the cameradisplacement between the two photos, in terms of photocoordinates,
was measured to be 540 pixels (𝑥𝑐′2). The relief displacement has been measured, and for
the Bonzobox they are: 𝑥𝑞1 − 𝑥𝑝1 = 756 and 𝑥𝑞2 − 𝑥𝑝2 = 348, in the left and right photo
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respectively, and for the Heinzbox they are: 𝑥𝑞1 − 𝑥𝑝1 = 322 and 𝑥𝑞2 − 𝑥𝑝2 = 159. Then
(19.2) results in 25.8 cm for the Bonzobox, and in 13.9 cm for the Heinzbox. As a verification,
direct measurement with a ruler gave 26.2 cm for the Bonzobox, and 13.6 cm for the Heinz
box. The above measurements have been done in the original photos, in terms of pixels
(using a rudimentary imageviewer such as Paint). Doing these measurements in a scaled
version of the photos, for instance measuring relief displacement with a ruler in the photos of
Figure 19.10 does not impact the outcome, as a scaling factor in 𝑥𝑝1 , 𝑥𝑞1 , 𝑥𝑝2 , 𝑥𝑞2 and 𝑥𝑐2′
actually cancels in the ratio of (19.2). The physical pixelsize of the camera is about 1 𝜇m,
and the total image is about 4000 x 3000 pixels, meaning the the physical image array of
the camera in the smartphone measures about 4 x 3 mm. From this, and the measurement
tape depicted in the photo, one can reconstruct that the focal length of the camera is about
𝑓 = 3.5 mm.
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Sensing by measurement of distance

In this chapter we cover the principles of ranging, first from pointtopoint, and secondly for
imaging. This second section in particular, provides the basis for remote sensing by ranging.
The last section provides a brief introduction to the two major aspects of the design of a
(spaceborne) remote sensing mission.

20.1. Principles of ranging
The purpose of ranging is to measure distances. In this context, ranging is performed using
either an acoustic signal, or an electromagnetic signal (including optical such as laser light).
Figure 18.5 showed the concept of twoway ranging. The signal travels forth from transmitter
to reflector, and then back to the transmitter/receiver, and a measurement of the twoway
traveltime 𝜏 is obtained (the total time delay, also referred to as the time of flight). The
distance 𝑙 between the radar transmitter and the reflecting surface/object is obtained through

𝑙 = 𝑐𝜏
2 (20.1)

where 𝑐 is the speed of light in vacuum (299792458 m/s), and we assume that the signal is
traveling actually with this speed of light in vacuum. We refer to Appendix G for a discussion
on signal propagation, for instance in the Earth’s atmosphere.

In Chapter 18, it was pointed out that we distinguish between oneway and twoway
ranging. In this chapter we start by outlining the two basic principles of ranging, and in the
context of radar remote sensing, the discussion is held here in terms of twoway ranging (but,
very similarly, applies to oneway ranging as well).

As stated in Chapter 18 as well, one can distinguish between two main principles of mea
suring traveltime: pulsebased ranging, and Continuous Wave (CW) ranging (phase based).
In the sequel we will cover both.

20.1.1. Pulse based ranging
Figure 20.1 shows the principle of measuring a twoway traveltime by using a pulse signal.
For a pulsebased system, the signal traveltime is directly observed through (20.1).

The range resolution is directly related to this:

Δ𝑙 = 𝑐Δ𝜏
2 (20.2)
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Figure 20.1: Pulsebased ranging: the traveltime of the pulse is measured. The pulse travels from the transmitter
to the reflector, and back.

where Δ𝜏 is the sampling interval of the clock within the instrument. The sampling interval is
typically tuned to the duration of the pulse, and the latter determines the bandwidth of the
ranging signal occupied in the frequency domain (a narrow pulse, in time, corresponds to a
wide band, in frequency, so it occupies a large part of the spectrum). The resolution deter
mines whether two targets or objects, which are close together, can still be ‘seen’ separately
by the radar or ranging instrument.

The maximum range of the radar is dependent on the pulse rate (or conversely, the time
duration between two pulses). To avoid misinterpretation (and without any prior knowledge),
it is typically required that no new pulse is transmitted, before the reflection of the earlier pulse
is received. Hence,

𝑙max =
𝑐𝜏max

2 (20.3)

where 𝜏max is the pulse repetition time interval (or, the time duration between two consec
utive pulses). In practise, the pulse repetition time may not be the only, or most important,
limiting factor. For example, also the power of the instrument, antennapattern, atmospheric
conditions, target reflectivity, and receiver/detector sensivitity, will determine the maximum
range of operation.

20.1.2. Phase based Continuous Wave (CW) ranging
In case of ranging using a continuous wave, the distance measurement is based on the phase
difference Φ (in radians, with Φ ∈ [0, 2𝜋⟩) between the transmitted and received signal (phase
comparison, similar to Section 4.2). Alternatively, the phase difference can be expressed in
cycles as Φ

2𝜋 (then being dimensionless). The traveltime of the signal 𝜏 is obtained by

𝜏 = Φ
2𝜋𝑇 + 𝑘𝑇 (20.4)

Here, 𝑇 is the period of the wave in seconds, and 𝑘 is the number of full wavelengths (also
referred to as ambiguity, 𝑘 ∈ ℕ). The phase difference between transmitted and received
signal is a measure for the traveltime, and hence distance, as the received signal is delayed,
because it made a trip to the reflector and back.

Using (20.1), and assuming 𝑘 = 0 (or knowing the cycle ambiguity in (20.4)), the measured
range 𝑙 (expressed in oneway) becomes

𝑙 = 𝑐
𝑓
Φ
4𝜋 (20.5)

where 𝑓 = 1/𝑇 is the frequency of the ranging signal carrier wave ([Hz]), and 𝑐 = 𝜆𝑓 (in
vacuum).
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Figure 20.2: Phasebased ranging: the sine carrier wave travels from the transmitter to the reflector, and back,
and the way back has, for convenience, been unfolded to the right in this diagram. With 𝑐 = 𝜆𝑓 Eq. (20.8) can
be turned into 𝑙 = 𝜆 Φ

4𝜋 + 𝜆
𝑘
2 . The fractional phase difference Φ = 𝜋

2 − 0 =
𝜋
2 (in radian, with Φ ∈ [0, 2𝜋⟩ as it is

the fractional phase difference, or
𝜋
2
2𝜋 =

1
4 cycle), and 𝑘 = 3 in this example. Thereby 𝑙 = 1

5
8𝜆.

Analogous to the pulsebased ranging, the range resolution is

Δ𝑙 = 𝑐
𝑓
ΔΦ
4𝜋 (20.6)

Compared to the range resolution of a pulsebased system, the CWfrequency 𝑓 determines
the ranging sensitivity. With increasing 𝑓, a better range resolution (smaller Δ𝑙) is obtained
(as a larger frequency, translates into a shorter wavelength). Generally the phase difference
can be determined up to (the order of) 10 milliradians. Hence, in principle a high frequency
is desirable.

However, the maximum (unambiguous) range for Φmax = 2𝜋 [rad] (a full cycle) is

𝑙max =
𝑐
𝑓
Φmax

4𝜋 = 𝜆Φmax

4𝜋 = 𝜆
2 (20.7)

This relation shows that the maximum range is directly related to the wavelength 𝜆 of the
signal. Hence, a long wavelength (low frequency) is desirable to maximize the range. Beyond
this range, one has to deal with an ambiguity. When the cycle ambiguity 𝑘 (an integer number)
in (20.4) is not known, we get, instead of (20.5):

𝑙 = 𝑐
𝑓
Φ
4𝜋 +

𝑐
𝑓
𝑘
2 (20.8)

and the resulting distance, expressed as a oneway distance, has an ambiguity 𝑘 𝜆2 .
Figure 20.2 shows the principle of measuring a twoway traveltime through measuring

the phase of a continuous carrier wave.
To overcome the contradicting requirements regarding range resolution and maximum

range, often a multifrequency system is used. The highest frequency signal determines the
resolution, whereas the lowest frequency gives the maximum range, see also Section 4.2,
which describes the operating principle of an EDM in a total station.

20.2. Rangerate: Doppler [*]
The frequency of a signal, measured or observed by a receiver, may differ from the frequency
with which the signal was sent by the transmitter, when transmitter and receiver are moving
relative to each other, see Figure 20.3. This is the Doppler effect. The most wellknown
example, in terms of sound waves, is the change in pitch of a police car siren as the car first
approaches you and then recedes.

The Doppler effect is used to measure the rate of change of a distance, or rangerate for
short, denoted by ̇𝑙, where the dot denotes the time derivative 𝑑𝑙

𝑑𝑡 . Practically speaking the
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Figure 20.3: The Doppler effect: the receiver is moving toward the transmitter and the observed frequency 𝑓𝑟 is
larger than the transmitted frequency 𝑓0. The Doppler shift equals 𝑓0 − 𝑓𝑟.

rate of change of distance ̇𝑙 is the relative radial speed between transmitter and receiver, i.e.
the relative speed along the line connecting the two (or more formally, the relative velocity
vector projected onto this line).

Integrating the rangerate ̇𝑙 (over time) yields the change in distance in the time interval
[𝑡1, 𝑡2]: 𝑙(𝑡2) − 𝑙(𝑡1) = ∫

𝑡2
𝑡1

̇𝑙(𝜈)𝑑𝜈.
For convenience we consider a stationary transmitter and a moving receiver (for oneway

ranging), as in Figure 20.3. The transmitter is broadcasting an electromagnetic wave with
frequency 𝑓0, and the receiver measures the frequency to be 𝑓𝑟. Then

𝑓0 − 𝑓𝑟
𝑓0

≈
̇𝑙
𝑐 (20.9)

The measured Doppler frequency (shift) equals 𝑓0−𝑓𝑟 and when the receiver is moving toward
the transmitter 𝑓0 < 𝑓𝑟 and correspondingly ̇𝑙 < 0, the distance between transmitter and
receiver gets shorter. The above expression is often found as 𝑓𝑟 ≈ 𝑓0(1 −

̇𝑙
𝑐 ). Note that

these (approximate) expressions are valid for ̇𝑙 ≪ 𝑐, see e.g. [52], for electromagnetic waves
traveling at 𝑐 in vacuum.

For twoway ranging the Doppler shift is twice as large, compared to oneway ranging in
the same scenario.

20.3. Imaging
Instead of detecting objects (targets) in specific directions, possibly by a moving or rotating
antenna, as typically used with air traffic control radar, a (fixed) antenna can ‘look’ sideways
and illuminate a whole area in one go. This is the basis of imaging, for instance with radar
remote sensing.

Only one (short) pulse is transmitted (at a time), and reflections are received during a
certain time span (the full response is recorded, with multiple reflections/echoes). An object
nearly underneath the sensor gives an early response (as the signal needs to travel only a
short distance), and an object far away (sidewards) from the sensor gives a late response (as
the signal has to travel a long way). Figure 18.7 already suggested a sideway looking radar.

Figure 20.5 demonstrates the imaging principle. The satellite is flying at altitude 𝐻 above
the Earth’s surface. The radar sensor is sidelooking; the looking angle of the radar is Θ.
Distance 𝑅 is the slant range, and 𝑅 sinΘ is the corresponding ground range.

The signal beam is indicated in light gray. The Earth’s surface, topography and objects
within the light gray beam return the signal, and, over a suited time span, the incoming
response, with multiple pulse echoes or reflections, is recorded, i.e. periodically sampled,
at time instants which are Δ𝜏 seconds apart. The sampling time interval is related to the
sampling frequency 𝑓𝑠, simply through 𝑓𝑠 =

1
Δ𝜏 . The samples each represent one pixel, and

they are stacked next to each other, and form one row (or line) in the image. The mapping,
or projection, from the samples in the time domain, to pixels covering the ground or Earth’s
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Figure 20.4: Example of radar amplitude image. Amplitude per pixel is shown in grayscale from black to white.
The image shows the area of Delft, about 7 km x 7 km, with the old city center in the middle, and (approximately)
North up, acquired, on Nov 1, 2015, by the DLR TerraSARX satellite [53] at 500 km altitude. The data are available
with a pixel size on ground of about 3 m x 3 m. Water bodies, like the Schiecanal, typically show up in black.

surface, is generally done using a reference surface, i.e. assuming a locally flat Earth’s surface
underneath the radar sensor, as in Figure 20.5, or more sophisticated, a curved Earth’s surface
(sphere, or ellipsoid).

As the satellite moves on, the next pulse records the next row of the image. In this way
a twodimensional image (or array) is created, with rows and columns of pixels. For ordinary
imaging, it is easiest to think of the intensity or amplitude of the incoming signal being recorded
for each pixel. As outlined in the introduction of Chapter 25, the intensity of the received signal
determines the pixel value, to say, whether the pixel gets black, white, or a particular shade
of gray.

Figure 20.4 shows an example of a radar image. Per pixel, the amplitude of the reflection
is shown: white represents a strong reflection into the direction of the radar sensor, and black
only a little or no reflection (such as water bodies).

In Chapter 23 we consider, next to the amplitude, also the phase of the radar signal, in
order to obtain geometric information (the phase is a measure of distance, cf. (20.5)).

The formation of one pixel is shown in Figure 20.5 through the segment in darkgray. The
pixel size in (slant) range direction, expressed in [m], is

𝑃𝑟 =
𝑐
2𝑓𝑠

(20.10)

similar to the range resolution in (20.2). Figure 20.5 shows that the sampling frequency 𝑓𝑠
and the looking angle Θ determine the pixel size on the ground, expressed in [m].

𝑃𝑔 =
𝑃𝑟

sinΘ =
𝑐
2

1
𝑓𝑠 sinΘ

(20.11)

From an aircraft or satellite, with a sidelooking instrument, images are obtained rowwise
of ground areas located perpendicular to the flight line. Together with the forward motion of
the aircraft or satellite, this eventually yields, like photography, a twodimensional image of
the Earth’s surface and its topography, see Figure 20.6. The strip length, i.e. the length of the
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Figure 20.5: Forming image pixels from the received response of the transmitted radar pulse.

Figure 20.6: Radar remote sensing: with a sidelooking radar, images are obtained rowwise, of ground areas
located perpendicular away from the flight line. As the satellite moves forward along its track, a twodimensional
image of (a swath of) the Earth’s surface and its topography is obtained. The pulserepetition frequency (PRF)
determines the width of the swath (the response area).

rows (in range or acrosstrack direction), is called the swath. The swath width, indicated in
yellow in Figure 20.6, is determined by the Pulse Repetition Frequency (PRF), which equals
1

𝜏max
, see with (20.3) and the radar beamwidth is typically set to match the PRF. The longer

the interval 𝜏max used for recording the echoes is, the wider the swath will be.
The radar azimuth spatial resolution (in the direction of the flight line, i.e. along track),

is inversely proportional to the length of the antenna, and hence, can be increased by either
using a longer antenna to narrow down the beamwidth. Another approach is to exploit the
forward motion of the sensor, by synthesizing the effect of a very long antenna, a technique
known as SAR (Synthetic Aperture Radar). Features on the Earth’s surface are captured in a
sequence of images, as the satellite moves forward, see Figure 20.7. Overlapping radar pulse
returns from different azimuth positions are combined. By the latter technique the resolution
gets essentially independent of the (flying) height of the instrument, and the antenna remains
physically unchanged.

20.4. Comparison on imaging geometry: photo vs. radar
Although both photography and radar employ electromagnetic waves and yield images, they
do rely on different principles. From a geometric point of view, photogrammetry, as discussed
in Chapter 19, is based on measuring angles, and radar (and lidar and sonar as well) on
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Figure 20.7: Crosssection in azimuthal direction (i.e. along flight track direction) of radar satellite, sensing the
Earth’s surface. The radio signal beamwidth is inversely proportional to the length of the antenna. In principle (at
left), one could opt to capture adjacent rows of the image nonoverlapping, i.e. take the next row (next pulse)
only once the satellite has sufficiently moved forward. With a synthetic aperture antenna (at right) one emulates
the effect of using a (very) long antenna, by capturing adjacent rows largely overlapping. In the processing of the
data effectively a narrow beam is formed. This yields a (much) higher image resolution in azimuth direction.

ranging, hence on measuring distances.
This section presents a simple example showing the difference, see Figure 20.8. An arti

ficial cliff appears as a ramp feature on the Earth’s surface (only one direction is considered
here, a vertical crosssection has been made). The sensor (antenna or lens), carried by an
aircraft or satellite, is exactly above the left vertical marker, at a height that equals the dis
tance between the two markers on the horizontal axis (the plate with the photo film has been
positioned parallel to the Earth’s surface).

1 2 6 7 8 9

3

4

5

Figure 20.8: Example of simple topography on the Earth’s surface to be captured by both photo and radar imaging.

radar

photo

5 4 3 2 8 9

1

9854321

Figure 20.9: Images of the example above, Figure 20.8, the photo image as the line on top, the radar image at
bottom.

The graph in Figure 20.9 presents the corresponding optical photo and radar image (same
crosssection as above). Along the horizontal axis the distance is given as measured by the
radar. For the photo (positive), the angle is converted into distance by the focal distance of the
camera (which was taken just equal to the aircraft height for convenience in this example),
and consequently is the distance of the image point to the center of the photo. The marker
presents again the sensor (or lens, perpendicularly projected onto the photo film).

As can be clearly seen from Figure 20.9, the measurement principles of distance and angle
yield two different images. The photo depicts features in the terrain as it encounters them in
logical order from left to right, from 1 through 9.
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Figure 20.10: Scenario giving clearly distinct images in terms of photo (based on direction) and radar (based on
distance).

In a sidelooking radar image, the direction of relief displacement is reversed compared
with an (ordinary) photo. The radar pulse for ranging reaches the top of a vertical feature
earlier than the base, and consequently the return signal from the top is received before that
of the base. This causes a vertical feature to lay over or lean forward (instead of back). In
the radar example point 5 (top) ‘comes before’ point 2 (base).

Both measurement techniques are based on electromagnetic waves and their propagation
— basically geometric optics — which means that objects in the shadow of other objects can
not be ‘seen’, as in the example the points 6 and 7. This holds for both the photo and the
radar image.

By means of the scenario shown in Figure 20.10, the difference between a photoimage
and a radarimage is distinctly marked. When the sensor is an optical camera, the tops of the
buildings A and B will be shown directly next to each other in the photo  they are in the same
viewing direction. In the radarimage however, they will be clearly apart, as their distances to
the sensor are clearly different: object B is much taller than object A, and consequently the
top of B is much closer to the sensor than the top of A.

In the radarimage, one will actually see buildings A and C directly next to each other, as the
tops of these two buildings have nearly the same distance to the sensor. In the photoimage,
buildings A and C are clearly apart, as they are in different viewing directions.

20.5. Spaceborne platform: mission design
A radar sensor can be mounted on a spaceborne or airborne platform, or can be operated from
the ground. Here, we focus on spaceborne platforms and we provide a short introduction to
satellite orbits.

Kepler’s laws of planetary motion (Johannes Kepler (15711630)) also apply to the motion
of a satellite around the Earth. The three laws state that:

1. the orbit is an ellipse with the Earth at one of the two foci (see Section 29.2 for details
on the ellipse and its eccentricity; when the eccentricity of the ellipse goes to zero, the
orbit turns into a circle, with the Earth in its center)

2. a line segment joining the satellite and the Earth, sweeps out equal areas during equal
time intervals (in highly elliptical orbits, the satellite moves very fast when it is close to
the Earth (when it is in, or near its perigee), and it moves very slowly in the other part
of the orbit (when it is close to its apogee))

3. the square of the orbital period 𝑇 is proportional to the cube of the semimajor axis 𝑎 of
its orbit
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Figure 20.11: The satellite orbit around the Earth is an ellipse.

The third law is conveniently cast in the equation

𝑛2𝑎3 = 𝐺𝑀 (20.12)

where 𝑛 is the meanmotion [rad/s] of the satellite (basically the average rate of the anomaly
angle, at the Earth, between the satellite position and the perigee); the meanmotion simply
equals 𝑛 = 2𝜋

𝑇 , with 𝑇 the orbital period [s] (it takes 𝑇 seconds to complete a full turn of 2𝜋
[rad]). The semimajor axis of the orbital ellipse is denoted by 𝑎 ([m]), see Figure 20.11, and
𝐺𝑀 is the Earth’s gravitational constant (𝐺𝑀 = 3.986005 ⋅ 1014 m3/s2), see Chapter 31.

These laws also follow from Newtonian mechanics, as a solution to the socalled twobody
problem (the satellite and the Earth, where the mass of the Earth is by far much bigger than
the mass of the satellite, and the satellite is falling around the Earth).

Ideally the satellite orbital plane (the plane in which the ellipse resides) is fixed in inertial
space. The two main parameters of this orbital plane are the inclination, which is the angle
of the plane, with the Earth’s equator, and, the longitude of the ascending node, which is the
angle between the vernal equinox and the longitude, along the equator, of the point where the
satellite — on its way to the Northern hemisphere — crosses the equator. The vernal equinox
refers to the direction to the Sun basically at March 21st; an equinox occurs when the plane
of Earth’s equator passes (contains) the center of the Sun (around March 21st, and around
September 21st).

An inclination of 90 degrees yields a socalled polar orbit (the satellite will each time pass
over both poles). And an inclination of 0 degrees, together with an orbital period of 23h56m,
yields a socalled geostationary orbit; the satellite keeps — as seen from the Earth — a fixed
position in the sky. In a polar orbit, a (single) satellite can, while orbiting the Earth, as the
Earth rotates underneath the satellite, in principle observe all places on Earth — it can get
directly overhead at any place on Earth. A satellite in a polar orbit can, in a couple of full
orbits around the Earth, observe the entire Earth’s surface.

One can see that the larger the orbital radius is (larger 𝑎), the larger the orbital period
𝑇 will be, and hence, the longer it takes before the satellite completes one orbit around the
Earth. The orbital period is an important parameter in the satellite’s mission design, as it
drives the orbit repeat time; together with the Earth’s rotation (one full turn, in inertial space,
in 23h56m) it determines when the same part of the Earth is imaged again by the satellite, i.e.
the time between two successive image captures of the same area (and thereby the temporal
resolution of an image sequence).

In general the orbital plane does not keep its orientation in inertial space, and in particular
it may rotate about the Earth’s rotation axis (a phenomenon known as precession, due to
oblateness of the Earth). In case the orbital plane makes one full turn in one year, the satellite
is in a socalled Sunsynchronous orbit. During the course of the Earth’s journey around the
Sun in one year, the orientation of the orbital plane with respect to the Sun, stays the same.
This is very convenient as the incidence angle of Sunlight onto the remotely sensed Earth’s
surface is always the same. The illumination of the scene is always the same.
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20.6. Concluding remarks
The principles covered in this chapter apply to radar remote sensing using electromagnetic
radio signals and to sounding using acoustic signals. Radar remote sensing is further covered
in Chapter 23, and acoustic remote sensing is further covered in Chapter 24.

The principles of ranging in Section 20.1 also apply to laser altimetry and scanning using
optical signals. Laser scanning is further covered in Chapter 22.

20.7. Exercises and worked examples
This section presents several exercises and worked answers about satellite remote sensing.

Question 1 With a radar altimeter on a satellite, the distance from the satellite to the
Earth’s surface is measured. Suppose that a distance accuracy of 1.5 cm is wanted, what is
then the corresponding requirement on the timing accuracy, to observe the signal traveltime?

Answer 1 A radar altimeter works through ranging, i.e. by transmitting a signal, which
is reflected by the Earth’s surface (or another object), and measuring the total traveltime —
upon reception on board of the satellite — of the reflected signal. The relation of the two
way traveltime 𝜏 and the geometric range or distance 𝑙 is given by Eq. (20.1). The word
‘accuracy’ can here be interpreted, in the assumed absence of biases and systematic offsets,
as precision, quantified by the standard deviation. Hence, the question can be reformulated
as: compute 𝜎𝜏, given a requirement of 𝜎𝑙 = 1.5 cm. The relation between 𝜏 and 𝑙 is a linear
one: 𝑙 = 𝑐

2𝜏, and with the propagation laws of Chapter 7, we simply have 𝜎𝑙 =
𝑐
2𝜎𝜏. Inserting

𝜎𝑙 = 1.5 cm, leads to 𝜎𝜏 = 0.1 ns (1 nanosecond). This requirement on the traveltime accuracy
is independent from the flying altitude of the satellite.

Question 2 A satellite is flying at an altitude of 20.200 km above the Earth’s surface.
Compute the orbital period. The radius of the Earth can be taken as 𝑅 = 6378 km.

Answer 2 The semimajor axis of the satellite’s orbital ellipse is 𝑎 = 20200 + 6378 =
26578 km. In this question we actually consider an even simpler case, namely of an orbital
ellipse with zero eccentricity, hence, just a circle. With 𝐺𝑀 = 3.986005 ⋅ 1014 m3/s2, and the
third law of Kepler 𝑛2𝑎3 = 𝐺𝑀, the mean motion becomes 𝑛 = 1.457 ⋅ 10−4 s−1. With 𝑛 = 2𝜋

𝑇 ,
we obtain 𝑇=43122 s. The satellite considered is actually a GPS satellite, which orbits the
Earth twice per 23h56m.

Question 3 Given is the (vertical) cross section of the terrain and the radar imaging
satellite in Figure 20.12. The satellite is sidelooking, and flying straight in (or out of) the
paper (the azimuth direction is perpendicular to the paper). Construct the radar image of the
shown terrain.

Figure 20.12: Vertical cross section of terrain to be imaged through radar remote sensing (Question 3).

Answer 3 Radar remote sensing relies on ranging, hence, on measuring distances. One
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way to construct the radar image is to measure distances from the satellite to all points of
interest in the terrain. And then layout all these distances along a straight line — this yields
the row of interest in the image. One should realize that points c and g will not be visible in
the image, as they are in the shadow — the radar cannot see them. The alternative is to note
that the satellite is generally at a large distance from the terrain (typically flying at several
hundreds of kilometers altitude), and thereby radar signal wavefronts, shown in gray, are —
locally seen — (nearly) parallel, see Figure 20.13. Mind that this drawing is not to scale, see
also the dimensions given in Figure 20.6. The row of interest in the image is then constructed
by projecting the points of interest, along these wavefronts, onto the line connecting the
satellite and the terrain. The points in the image are indicated with a prime, hence b’, a’, e’, d’
and f’. The first ramp (or hill) with point b as its top, leans forward in the image — this means
that the top (b’) is shown in the image, before the base (a’).

Figure 20.13: Process of imaging terrain with radar remote sensing (Answer 3).
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Signals and hardware

In surveying we use electromagnetic (EM) signals, and audio signals (sound). Electromag
netic waves are produced when free electric charges accelerate (for instance in an antenna),
or when electrons bound to atoms and molecules make transitions to lower energy states.
Electromagnetic signals propagate well in space (vacuum) and in air, over large distances,
but only very limited in liquid (e.g. water). Sound is generated by motions of particles in a
medium (this causes minute variations in pressure and density, for instance in air). These
compressions and dilations propagate from transmitter to receiver, as a longitudinal wave.
The presence and propagation of sound relies on the presence of particles, as airmolecules.
Acoustic signals can not be used in space, but they can be used well in liquid (e.g. water). For
the physical background on these subject, see e.g. [52], which actually serves as a reference
textbook for the entire field of physics. A short exposition on signal propagation is given in
Appendix G.

The second part of this chapter provides a basic overview of the working principles of two
crucial hardware components as present in most of today’s survey equipment. The oscillator
and the antenna — delivering electromagnetic waves — are discussed.

21.1. Spectrum
For analysis purposes signals are decomposed in terms of periodic signals. That is, signals
which vary sinusoidally with time 𝑡, and repeat after 𝑇 seconds in time. The strict definition of
a signal 𝑠 being periodic, reads 𝑠(𝑡) = 𝑠(𝑡+𝑘𝑇) ∀ 𝑡 ∈ ℝ with 𝑘 ∈ ℤ. 𝑇 is the period in [s], and
𝑓 = 1

𝑇 is the frequency in [1/s], which is [Hz], sometimes referred to as ‘cycles per second’.
Mind that in Chapter 19, symbol 𝑓 was also used, to denote the focal distance of a camera.

The periodic behaviour of a parameter or quantity can be interpreted as a vector, which’s
endpoint traces a (unit) circle. In radians, a full turn corresponds to 2𝜋, and hence 𝜔 = 2𝜋𝑓
yields the angular velocity of the rotating vector, or angular frequency in [rad/s].

21.1.1. Electromagnetic spectrum
By the speed of light (or any EMsignal) in [m/s], the frequency 𝑓 and the wavelength 𝜆 in
[m] are related according to 𝑐 = 𝜆𝑓. As a medium we consider here vacuum, and symbol 𝑐 is
reserved specifically for the speed of light in vacuum. In other media the speed of light, and
hence the wavelength 𝜆, may be different (though the speed in air may still be very close to
the one in vacuum). When an electromagnetic field is, as a wave, propagating through space,
the period in time translates into a period in space, and this is the wavelength.
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designation frequency range [Hz] wavelength range [m] remark

Extremely Low Frequency (ELF) 3 ⋅ 100 − 3 ⋅ 101 108 − 107
Super Low Frequency (SLF) 3 ⋅ 101 − 3 ⋅ 102 107 − 106
Ultra Low Frequency (ULF) 3 ⋅ 102 − 3 ⋅ 103 106 − 105
Very Low Frequency (VLF) 3 ⋅ 103 − 3 ⋅ 104 105 − 104
Low Frequency (LF) 3 ⋅ 104 − 3 ⋅ 105 104 − 103 long waves
Medium Frequency (MF) 3 ⋅ 105 − 3 ⋅ 106 103 − 102 medium waves
High Frequency (HF) 3 ⋅ 106 − 3 ⋅ 107 102 − 101 short waves
Very High Frequency (VHF) 3 ⋅ 107 − 3 ⋅ 108 101 − 100
Ultra High Frequency (UHF) 3 ⋅ 108 − 3 ⋅ 109 100 − 10−1 micro waves
Super High Frequency (SHF) 3 ⋅ 109 − 3 ⋅ 1010 10−1 − 10−2 micro waves
Extremely High Frequency (EHF) 3 ⋅ 1010 − 3 ⋅ 1011 10−2 − 10−3

thermal, or farinfrared 1012 10−4
infrared 1013 10−5
nearinfrared 1014 10−6
visible light 4 ⋅ 1014 − 7 ⋅ 1014 7 ⋅ 10−7 − 4 ⋅ 10−7
ultraviolet (UV) 1016 10−7
Xray 1018 10−9
gammaradiation > 1019 < 10−11

Table 21.1: The electromagnetic spectrum divided after frequency. Wavelength 𝜆 and frequency 𝑓 are related by
the speed of light in vacuum 𝑐, according to 𝑐 = 𝜆𝑓, with 𝑐 = 299792458 [m/s], roughly 3 ⋅108 [m/s]. The speed
of light in vacuum is a universal physical constant. For thermalinfrared, infrared, nearinfrared, ultraviolet, Xray
and gammaradiation only approximate midvalues are given (for frequency and wavelength).

After the wavelength, or conversely the frequency, the whole range of the electromagnetic
spectrum can be subdivided, see Table 21.1.

Note that the designations, or bands, for the radio frequencies, from ELF through EHF,
each cover one order of magnitude; for example, VHF ranges from 30 to 300 MHz in frequency
(3 ⋅ 107  3 ⋅ 108), corresponding to 10 to 1 meter in wavelength (101  100).

Electromagnetic waves from ELF to EHF are usually referred to as radiowaves.
Apart from AMradio in the medium range and short waves in the high frequency range, the

VHF category contains most radio and television signal transmissions (up to the UHFband).
FMradio and DAB digital radio are in the VHFband (88–108 MHz, 174–240 MHz resp.), and
TV channels use the VHFband (54–88 MHz) and (174–216 MHz) and the UHFband (470–
862 MHz), the latter is also used by DVBT digital television.

GPS satellite navigation operates in the UHFband ((L2frequency) 1.2276 GHz and (L1
frequency) 1.57542 GHz), and so do microwave ovens (2.45 GHz), and Wireless Local Area
Networks WLAN/WiFi (2.4 GHz). Also mobile communication takes place in this part of the
electromagnetic spectrum, initially around 900 MHz (GSM) and today also at 1.8, 1.9 and 2.1
GHz (UMTS, 4G), and also 3.5 GHz (5G), with bands up to several tens of MHz wide.

Radar, with millimeter through decimeter wavelengths in the 1–100 GHz band, is used for
remote sensing. Specifically the socalled Cband is often used (with wavelengths in the order
of 47 cm) and the Xband (with wavelengths around 3 cm). Radar supplies its own source of
energy to illuminate objects of interest. Electromagnetic radar waves travel two ways, from
sensor to object, and back. It is an active measurement system. Radar can also be used to
detect precipitation in the Earth’s atmosphere, as for instance rain showers. Reflectivity of the
signal depends on the type of precipitation (rain, snow, hail, etc.), precipitation rate and on
employed frequency. Weather radar usually operates in the 4–10 GHz range.
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designation frequency range [Hz] wavelength range [m] remark

audible 2 ⋅ 101 − 2 ⋅ 104 2 ⋅ 101 − 2 ⋅ 10−2
ultrasound 2 ⋅ 104 − 2 ⋅ 109 2 ⋅ 10−2 − 2 ⋅ 10−7

Table 21.2: The sound spectrum divided after frequency. Wavelength 𝜆 and frequency 𝑓 are related by the speed
of sound in air 𝑣, according to 𝑣 = 𝜆𝑓, with 𝑣 ≈ 340 [m/s].

designation frequency range [Hz] wavelength range [m] remark

audible 2 ⋅ 101 − 2 ⋅ 104 7 ⋅ 101 − 7 ⋅ 10−2
ultrasound 2 ⋅ 104 − 2 ⋅ 109 7 ⋅ 10−2 − 7 ⋅ 10−7

Table 21.3: The sound spectrum divided after frequency. Wavelength 𝜆 and frequency 𝑓 are related by the speed
of sound in water 𝑣, according to 𝑣 = 𝜆𝑓, with 𝑣 ≈ 1480 [m/s].

Electromagnetic waves for which the human eye is sensitive, lie in the range from 700
to 400 nm (wavelength), from red, via green, to blue; longer waves are in the infrared range
and shorter waves are ultraviolet radiation. By the virtue of reflected Sun light we can observe
features at daylight. Laser generally uses wavelengths between 0.5 and 1 𝜇m. Electrooptical
EDMs typically operate on nearinfrared (0.8–0.9 𝜇m) and on red laser (≈ 0.6 𝜇m).

Far infrared, with wavelengths of about 100 𝜇m may alternatively be referred to as ther
mal infrared. All objects or media at temperatures above absolute zero (0 Kelvin, 273.15
∘C) continuously emit electromagnetic radiation, associated with heat. The object’s surface
temperature is a key parameter to the amount of radiated energy. Passive thermal scanners
rely on this type of electromagnetic radiation, see Chapter 25.

21.1.2. Audio spectrum
As electromagnetic waves virtually do not penetrate in water, acoustic signals are generally
used in hydrography instead. Techniques and systems based on acoustic waves are referred
to as sonar. The acronym stands for SOund NAvigation and Ranging. Sound (like human
speech and music) usually refers to oscillations of air. Man’s ear is sensitive to frequencies in
the range of 20 Hz to 20 kHz and human voice typically ranges from 300 to 3600 Hz. A bat
uses an audio signal in the 100—200 kHz range to navigate and locate a prey. The frequencies
used for sonar in water typically range from a few kHz to several hundreds of kHz.

The propagation speed of an acoustic wave in air, as in the Earth’s atmosphere, is about
3.4 ⋅ 102 [m/s], but considerably larger in liquid and solid media. In water it lies in the order
of 1.5 ⋅ 103 [m/s], and depends on temperature, pressure and salinity. Tables 21.2 and 21.3
present the spectrum of audiosignals in air, and in water.

The basic instrument in hydrography is the echo sounder that measures depth. A trans
ducer attached to the bottom of a vessel measures the time duration between departure of the
(transmitted) signal and arrival of the signal reflected by the seafloor, similar to Figure 18.5,
but then in a vertical sense. At present, side scan sonars and multiple sonar (multibeam)
systems are used for seafloor mapping. Acoustic waves are then not used only for depth
measurements, but merely for positioning under water in general. Finally we state that the
word ‘sounding’ is generally used for all types of depth measurements, including those that
do not use sound.
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Figure 21.1: Prototype of pendulum clock developed and used by Christiaan Huygens in the tower of the Old
Church in Scheveningen (Oude Kerk in de Keizerstraat). This original pendulum clock is now housed in the Huygens
museum in Voorburg, see Figure 17.2.

21.2. Oscillator
An oscillator delivers a periodically repeated signal, phenomenon or event, think for instance
of a pendulum clock, invented by Christiaan Huygens in 1656, with the pendulum ‘endlessly’
swinging forth and back, see Figure 21.1. The oscillator, the heart of most measurement
equipment, is responsible for basically generating a constant frequency, or conversely a se
quence of constant time durations (constant period). The oscillator drives both timekeeping
in the instrument, as well as signal generation and processing.

A clock is basically a counter; it counts the number of events or cycles produced by the
oscillator, and dividing the count by the (nominal) frequency yields the lapsed time. For
example, counting 50 cycles from an oscillator running at 10 Hz (10 cycles per second), yields
at time duration of 50/10 = 5 seconds.

In this section we outline the principle of deriving time from an oscillator signal, and we
show how frequency instability of the oscillator leads to timing errors. As a signal we consider
just a basic monotone carrier signal. The carrier signal supplied by the oscillator is a (periodic)
sinusoidal wave 𝑠(𝑡) = cos𝜙(𝑡). The sine, or cosine, carries the phase 𝜙(𝑡) = 𝜔𝑡 = 2𝜋𝑓𝑡
as the argument in radians, or 𝜙(𝑡) = 𝑓𝑡 in cycles. The angular frequency is denoted by 𝜔,
and frequency 𝑓 is in Hertz, and time 𝑡 in seconds. Up to now it was tacitly assumed that the
oscillator behaved perfectly and that the phase (in cycles) followed as

𝜙(𝑡) = 𝑓𝑡

with frequency 𝑓 constant and 𝜙(𝑡 = 0) = 0.
The frequency realized by the oscillator may vary with time however, 𝑓(𝜈), and more

https://www.hofwijck.nl/
https://www.hofwijck.nl/
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precisely, the (difference in) phase in cycles (over a time span from 𝑡𝑜 to 𝑡) reads

𝜙(𝑡) − 𝜙(𝑡𝑜) = ∫
𝑡

𝑡𝑜
𝑓(𝜈)𝑑𝜈 (21.1)

where the time argument of the integral 𝜈 runs from 𝑡𝑜 to 𝑡, and at time 𝑡 the cosine (or sine)
with argument would read

cos 2𝜋(∫
𝑡

𝑡𝑜
𝑓(𝜈)𝑑𝜈 + 𝜙(𝑡𝑜))

Any deviation in the phase of the oscillator transfers into the phase of the signal carrier. The
frequency in Hertz (or number of cycles per second) is just the time derivative of the phase.

In practice the oscillator can not maintain the specified/nominal frequency exactly. The
actual frequency 𝑓(𝜈) can be split into 𝑓(𝜈) = 𝑓𝑜+𝛿𝑓(𝜈), the nominal (and constant) frequency
𝑓𝑜, and the frequency deviation 𝛿𝑓(𝜈). In the sequel we first consider how frequency deviation
causes a time error, and then we return to timing stability.

21.2.1. Clock error
In most measurement equipment, frequency and time are due to the very same oscillator.
The oscillator generates the signal, and also drives the clock. We will introduce therefore the
clock error (or offset) of the equipment or device.

Any deviation in frequency translates directly into a timing error. The change in phase (21.1)
over the time span [𝑡𝑜 , 𝑡] as realized by the oscillator of the device, divided by the nominal
frequency 𝑓𝑜, yields the change in time �̄� as kept and indicated (or displayed) by the device.

�̄�(𝑡) − �̄�(𝑡𝑜) =
𝜙(𝑡) − 𝜙(𝑡𝑜)

𝑓𝑜
= 1

𝑓𝑜
∫
𝑡

𝑡𝑜
𝑓(𝜈)𝑑𝜈

= 1
𝑓𝑜
∫
𝑡

𝑡𝑜
(𝑓𝑜 + 𝛿𝑓(𝜈))𝑑𝜈

= (𝑡 − 𝑡𝑜) +
1
𝑓𝑜
∫
𝑡

𝑡𝑜
𝛿𝑓(𝜈)𝑑𝜈

= (𝑡 − 𝑡𝑜) + 𝛿𝑡(𝑡) − 𝛿𝑡(𝑡𝑜)

Disregarding the (absolute) origin of time (mankind can actually measure only time dura
tion), the instantaneous relation reads

𝑡 = �̄�(𝑡) − 𝛿𝑡(𝑡)

The ideal proper or true time 𝑡 is obtained by reading the clock of the device �̄�(𝑡), and cor
recting it for the clock error/offset 𝛿𝑡(𝑡), see Figure 21.2.

As in Figure 18.4, clocks are used to measure signal traveltime. If the clock of the receiver
runs ahead, or lags behind, the observed signal traveltime will be too long, or too short,
respectively. When, in measuring the signal traveltime from transmitter i to receiver j, 𝑡𝑖𝑗 =
𝑡𝑗 −𝑡𝑖, the clock of receiver j is involved, the observation shall be corrected for the clock error
𝛿𝑡𝑗(𝑡) multiplied by 𝑐, or equivalently, when unknown, the clock error 𝛿𝑡𝑗(𝑡), multiplied by 𝑐,
appears on the right hand side in the observation equation (we assume here that transmitter
i is perfectly synchronized, and has zero clock error).
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Figure 21.2: The clock offset 𝛿𝑡 is the offset between the time �̄� shown by the device and the true time 𝑡. In this
example the clock drift is caused by a (constant) frequency offset 𝛿�̄�. Clock �̄� is running too fast.

21.2.2. Timing stability [*]
Fluctuations 𝛿𝑓(𝜈) in the frequency of an oscillator about its nominal frequency 𝑓𝑜, referred
to as frequency accuracy (or, actually frequency inaccuracy), can result from perturbations
such as thermal noise in electric components, instrumental ageing, and environmental varia
tions (temperature, pressure, vibrations). As just shown, these fluctuations cause the time,
displayed by the device, to deviate from the true time.

Departures 𝛿𝑓(𝜈) from the nominal frequency 𝑓𝑜 are typically expressed as a relative mea
sure, through

𝛿 ̄𝑓(𝜈) = 𝛿𝑓(𝜈)
𝑓𝑜

which is the relative frequency departure, or fractional frequency error. It is a dimensionless
quantity.

From 1
𝑓𝑜
∫𝑡𝑡𝑜 𝛿𝑓(𝜈)𝑑𝜈 = 𝛿𝑡(𝑡) − 𝛿𝑡(𝑡𝑜), setting 𝑡𝑜 to −∞, and taking the derivative

𝛿 ̄𝑓(𝑡) = 𝛿𝑓(𝑡)
𝑓𝑜

= 𝑑(𝛿𝑡(𝑡))
𝑑𝑡

one can deduce basically that the relative frequency error equals the rate of change of the
clock error.

Ideally 𝛿 ̄𝑓(𝑡) = 0 and the oscillator runs exactly at the right, nominal frequency. The clock
time error will be constant (not change). The clock may run late or early, already from the
start, but it runs at the right pace, and its offset stays the same.

If the relative frequency error is constant, 𝛿 ̄𝑓(𝑡) = 𝑘, with 𝑘 ≠ 0, the oscillator constantly
runs too fast (or too slow), and the clock offset will change (linearly) as time goes by, see
Figure 21.2. The frequency is not correct 𝑓(𝑡) = (1 + 𝑘)𝑓𝑜 ≠ 𝑓𝑜, but this oscillator still is
perfectly stable (running at a constant frequency).

In practice frequency instabilities are more of a concern, i.e. the variation in 𝛿 ̄𝑓(𝑡). In the
sequel we want to quantify (measure) the frequency (in)stability.

Comparing the readings of a certain clock with a calibrated/proven standard, we could
compute the Mean Squared Error (MSE) of the observed time differences, as a measure of
accuracy. In the timekeeping community instead a slightly different approach is followed, by
using the Allanvariance [54] as a measure of timestability.

Based on a series of discrete relative frequency error measurements 𝛿 ̄𝑓𝑖 at times 𝑡𝑖 with
𝑖 = 1,… ,𝑁, equidistantly in time, Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖, (these measurements may originate from a
series of time error measurements 𝛿𝑡𝑖 at times 𝑡𝑖 with 𝑖 = 1,… ,𝑁 + 1, specifically differences
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oscillator stability

pendulum 10−5–10−6
quartz 10−6–10−10
atomic  rubidium 10−12
atomic  cesium 10−13
hydrogen maser 10−13–10−15

Table 21.4: Oscillator types and their long term (in)stability, over a full day. The time (in)stability is expressed as
the Allan deviation, which is the square root of the Allan variance.

in time error 𝛿 ̄𝑓𝑖 =
𝛿𝑡𝑖+1−𝛿𝑡𝑖

Δ𝑡 ) the Allan variance, which is the mean of a series of twosample
variances, reads

�̂�2𝛿�̄� =
1
2
∑𝑁−1𝑖=1 (𝛿 ̄𝑓𝑖+1 − 𝛿 ̄𝑓𝑖)2

𝑁 − 1

The Allanvariance takes into account the time duration over which the stability is kept, in
this case Δ𝑡, sometimes referred to as the averaging time. For oscillators in practice short
term stability may clearly differ from long term stability. The Allan variance is a dimensionless
quantity. The square root of the Allan variance is the Allan deviation, and it can be thought to
have units ‘seconds per second’.

21.2.3. Timekeeping
Table 21.4 presents several common types of oscillators and their timing (in)stability. Given
is the stability over one day of 24 hours. Stability characteristics of an oscillator may differ
significantly on short, mid and long term. The classical mechanical pendulum looses 1 to 0.1
second a day. For comparison it is mentioned that the daily variation of the Earth’s rotation
rate is at the level of a few milliseconds per day. The Earth’s timing accuracy lies consequently
on the order of 10−8 s/s. For a long time, (civil) time has been based on (astronomial) celestial
motions, and in particular the Earth’s rotation.

For twoway ranging systems, actually only shortterm timing stability is critical. As trans
mitter and receiver are just a single physical device, and sharing the same clock/oscillator,
timing stability is — in principle — needed over just the twoway traveltime duration. Though
note that when using EMsignals, just one nanosecond timing error, already translates in a
0.30 m error, by the speed of light.

At present an oscillator is based on either a vibrating crystal (piezoelectric effect; quartz
oscillator) or (energy) state transitions of (usually cesium or rubidium) atoms, (atomic clock).
A cheap quartz oscillator (often found in GPS receivers) looses 1 𝜇s every second, which is
close to 0.1 second a day. The stability of an ordinary quartz crystal oscillator (XO) is improved
to 10−8 and 10−10 by respectively the temperature compensated crystal oscillator (TCXO) and
the ovencontrolled crystal oscillator (OCXO). Atomic clocks possess superior stabilities. They
are based on rubidium, hydrogen (maser) and (at present primarily) cesium. Using strontium
a stability of 10−18 has been demonstrated with an experimental atomic clock. Confined ion
clocks may be used in future and optical frequency standards on the long run.

Only since a few decades, (civil) time is kept by atomic frequency standards; the Coor
dinated Universal Time (UTC) is related to the International Atomic Time (TAI). The national
time standard in the Netherlands is maintained by National Metrology Institute VSL in Delft,
see Figure 21.3. For further reading on the art of timing, we refer to [54].
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Figure 21.3: Control room at National Metrology Institute VSL in Delft for maintaining the official time standard in
the Netherlands. This time is driven by four atomic clocks at VSL, which are continuously being compared against
atomic clocks around the world (more than 400 of these clocks at about 90 time laboratories). This comparison
relies on satellite signals, as for instance navigation satellite signals (such as those of GPS and Galileo). The
Coordinated Universal Time (UTC) is eventually realized as a weighted mean of an ensemble of atomic clocks
around the world, including the ones at VSL. Image courtesy of National Metrology Institute VSL in Delft [55].
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Figure 21.4: When charged particles (e.g. electrons) are accelerated through a conductor, a (varying) electric
field is induced. An electric dipole antenna is fed, at the two short ends on the left, with an alternating current,
causing the charged particles to oscillate in the two antenna elements. The electric field, shown by vector 𝐸, is
changing accordingly and the (typically sinusoidal) wave propagates away from the antenna to the right, see also
Figure G.4. The magnetic field is not shown. The polarization is linear.

21.3. Antenna
In this section we briefly describe how electromagnetic waves are generated, and in particular
the class of radiowaves. The acoustic transducer is not covered here.

The antenna converts transmitter’s timevarying electric currents into electromagnetic
waves, representing an analog signal, that can propagate through space, and the Earth’s
atmosphere, to the receiver, at which the reverse process takes place. Figure 21.4 shows
one of the elementary antenna types, namely the dipole antenna. It consists of two pieces
of conducting material (wires or rods). In Figure 21.4 the two pieces are aligned vertically, in
the plane of the paper.

For several applications it would be ideal would the antenna radiate in any direction, and
with the same amount, this would be an isotropic antenna, but this is physically not possible.
The bottom line is that the electric and magnetic field strengths (and hence the power flow
as well) depend on spatial direction. The relative distribution of radiated power as a function
of the spatial direction is given by the antenna’s radiation pattern and an example is shown
in Figure 21.5. It presents the radiation pattern of the very elementary dipole antenna. In
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Figure 21.5: The radiation pattern of a dipole antenna. The radiated power, indicated by the length of the arrow,
is proportional to sin2 Θ. Along the antenna axis it is zero and at maximum in the plane perpendicular to the
antenna axis, as shown here in the direction of the 𝑦axis.

this case the radiated power depends only on zenith angle Θ, not on the azimuth angle. The
pattern is rotation symmetric about the 𝑧axis. The antenna is positioned in Figure 21.5 just
as it is shown in Figure 21.4.

The spheres in Figure 21.5 show that the antenna transmits the strongest signal along the
horizontal axis, and that signalstrength decreases with increasing angle with the horizontal
axis. No signal power is transmitted in the direction aligned with the antenna elements (zenith
angle equal to zero).

A dipole antenna consists of two rods of conducting material as shown in Figure 21.4. In
order to radiate electromagnetic power efficiently, the minimum size of the antenna must be
comparable to the wavelength. Each of the rods in Figure 21.4 is onequarter of a wavelength
long. They are placed end to end with a small spacing at the center. The antenna has
consequently a size of half a wavelength.

A dipole antenna can receive the electromagnetic field shown in Figure 21.4, when it is
orientated parallel to the direction of the electric field, shown by vector 𝐸, so that an alternating
current is induced in the receiving antenna.

Electromagnetic signal transmission is covered in further detail in Appendix G.1.

21.4. Exercises and worked examples
This section presents one exercise on the impact of a clock error on measuring distances with
GPS.

Question 1 GPS satellite navigation is based on observing distances from satellites to a
receiver by measuring the traveltimes of the radiosignals, and multiplying them by the speed
of light. If the simple oscillator in the GPS receiver, for instance embedded in a smartphone,
has a stability of only 10−6, how quickly does the bias in the observed pseudorange increase
(or decrease)? To say, what is the rate of change in the pseudorange, induced by the oscillator
in the receiver?

Answer 1 The answer is simply evaluated as 10−6 s/s, multiplied by the speed of light 𝑐
3 ⋅ 108 m/s. A stability of 10−6 means that the clock looses (or gains) 1 𝜇s every second, and
1 𝜇s is equivalent to 300 m in terms of range.
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Lidar

Laser ranging relies on electromagnetic signals with wavelengths in the range roughly from
500 nm (visible light) to 1500 nm (shortwavelength infrared), see Section 21.1.1 on the
spectrum. Most often red and green colored laser light is used. Lidar stands for ‘light detection
and ranging’. A laser signal is sent, and the purpose is to detect the echo from an object.
Both principles of ranging are applied with laser ranging: pulse based ranging as discussed in
Section 20.1.1, and phase based ranging as discussed in Section 20.1.2. In this chapter we
cover lidar remote sensing.

As lasers operate in the optical domain, a clear line of sight is needed from instrument to
target. Dust, smoke, fog and clouds hamper the propagation of the laser signal. In particular
green lasers can penetrate into water to some extent, up to several tens of meters in clear
water, and this is useful for bathymetry of shallow waters, for instance in coastal areas.

22.1. Laser ranging
Laser ranging basically amounts to determining the distance, by measuring the traveltime
of the laser signal, from instrument to target and back, hence, the twoway traveltime, see
Figure 18.5. The principle of a laser ranger is similar to that of an EDM on a total station
(Section 4.2), though typically with laser ranging no special reflector is needed — the object
under survey itself reflects the laser light. The amount of reflected laser light depends on
certain properties of the object, for instance surface material and color. The instrument can
be mounted in an aircraft, helicopter or satellite, and point down to the Earth’s surface. While
the air or spacecraft moves forward, laser ranging is performed, and a profile of the terrain
is obtained. This is referred to as laser altimetry, see Figure 22.1.

Laser beams can be very narrow, with little divergence only. Over distances of tens of

Figure 22.1: Laser altimetry: with a downward pointing laser instrument on an aircraft a profile of the terrain is
obtained, once position and attitude of the aircraft are determined.
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Figure 22.2: Principle of a laser scanner: with measurement of vertical angle 𝜁, horizontal angle 𝛼 (with respect
to the yaxis), and distance 𝑙 to an object, 3Dposition coordinates, in the local laser scanner coordinate system
(𝑥, 𝑦, 𝑧) are obtained as: 𝑥 = 𝑙 sin𝛼 sin 𝜁, 𝑦 = 𝑙 cos𝛼 sin 𝜁, and 𝑧 = 𝑙 cos 𝜁, cf. Figure 29.6. This is the principle
of spherical coordinates.

meters the footprint diameter (beam diameter) is only a few millimeter, and for example, for
a spaceborne laser (the Global Ecosystem Dynamics Investigation (GEDI) instrument carried
by the International Space Station (ISS)) at 400 km orbital altitude, the footprint diameter on
the Earth’s surface is 30 meter. With these figures we assume that the reflecting surface is
perpendicular to the inciding laser beam.

In addition to the distance, also the amplitude of the response is recorded, which is a
measure for the reflectivity of the target surface. Snow for instance reflects very well, and
trees and sand reflect moderately. Generally white objects are better laser reflectors than black
objects. In this respect it should also be noted that sending a laser signal from overhead onto
a forest (e.g. with airborne laser altimetry) generally yields multiple echoes: part of the signal’s
energy is reflected by the top of the canopy (tree crowns), another part by lower branches
and bushes, and finally the last part by the ground surface.

22.2. Laser scanning
In this section we introduce the principle of laser scanning. By means of a simple example we
analyze the precision of geometric information obtained with laser scanning, and we briefly
the interpretation and georeferencing of the obtained point cloud.

22.2.1. Principle
A laser scanning instrument can measure, much similar to a total station covered in Chapter 4,
the horizontal and vertical angle, as well as the distance to an object. The principle of a laser
scanner is shown in Figure 22.2. The instrument is setup local level, such that the zaxis
is pointing to the zenith (and the axis is aligned with the direction of the local gravitational
acceleration). The optical unit of the instrument, also referred to as the head, rotates about
the vertical zaxis, such that horizontal angle 𝛼 varies, and objects around can be measured.
The mirror, shown in Figure 22.2, deflects the laser signal (in red) into a direction with a
vertical angle of 𝜁 with respect to the local zenith. The mirror is spinning such that angle
𝜁 varies, and objects around can be measured. The laser signal returned by an object (not
shown here) basically travels the same path back into the instrument to a photo detector.

A terrestrial laser scanner can scan 360 degrees around (horizontally, angle 𝛼), and 135
degrees (or more) (vertically, angle 𝜁); field of view. This allows one to build a full, three
dimensional picture of the environment — the whole scene is surveyed in just a couple of
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Figure 22.3: At left, Leica P40 terrestrial laser scanner in front of De Trambrug, an ironarch bridge in Schipluiden,
near Delft, crossing the Vlaardingse Vaart. The measurement principle of a terrestrial laser scanner is similar
to that of a total station, and consists of measuring vertical angle, horizontal angle, and distance to objects.
Measurements with a laser scanner are acquired at an astonishingly high rate! This laser scanner can measure up
to 1 million points per second, with a maximum range of 270 m. At right, combined point cloud resulting from 14
scans with the laser scanner occupying positions on both sies of the bridge, and also on the bridge deck. The full
3Dmodel shown here contains about 42 million points. Photo at left [56] and point cloud at right [57] by Linh
TruongHong, 2019.

Figure 22.4: Setup of a terrestrial laser scanner. Error analysis for a special case (vertical crosssection), with
a fixed (known) height ℎ, scanning objects on a flat ground surface. An error in the measured angle 𝜑 then
translates into an error in distance 𝑏.

minutes. Such a scanner is referred to as a panoramic scanner, see the instrument shown
in Figure 22.3 at left. An example of such a full scan, resulting in a socalled point cloud, is
shown in Figure 22.3 at right. Laser scanning generally yields large amounts of data.

22.2.2. Example: analysis of scanning precision
As an example we consider a special case in a twodimensional situation, shown in Figure 22.4.
The scanner is setup at height ℎ, above a flat ground surface; height ℎ is assumed to be
perfectly known here, and the reference direction is straight down (direction 𝜑 = 0).

The positions of objects on the ground surface, that is, distance 𝑏, can now be determined
by just measuring angle 𝜑 (for simplicity we do not use the measured slant distance in this
example). Distance 𝑏 is obtained through

𝑏 = ℎ tan𝜑

A highend laser scanner has an angular precision of about 𝜎𝜑 = 0.003∘ (≈ 5 ⋅ 10−5 rad).
The goal of this example is to propagate the standard deviation of angle 𝜑, into the standard
deviation of 𝑏. As the above relation is nonlinear in 𝜑, we need to take recourse to the
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𝜑 [∘] 𝜎𝑏 [mm]

0 0.1
15 0.1
30 0.1
45 0.2
60 0.4
75 1.6

Table 22.1: Standard deviation of coordinate 𝑏 for various values of scan angle 𝜑, for the setup of Figure 22.4,
with 𝜎𝜑 = 0.003∘ and ℎ = 2 m.

variance propagation law for the nonlinear case (7.12) in Section 7.4. With

𝜕(ℎ tan𝜑)
𝜕𝜑 = ℎ 1

cos2 𝜑

we obtain

𝜎2𝑏 ≈ ℎ
1

cos2 𝜑 𝜎2𝜑 ℎ
1

cos2 𝜑

and hence

𝜎𝑏 = ℎ
1

cos2 𝜑𝜎𝜑

with angular standard deviation 𝜎𝜑 in radians. Table 22.1 shows the resulting standard de
viation coordinate 𝑏 for various values of angle 𝜑. This shows that the uncertainty in the
direction (angle 𝜑) alone, has an impact on the horizontal coordinate which gets much larger
with larger angle 𝜑, i.e. further (sidewards) away from the scanner. Directly underneath the
scanner, 𝜑 = 0∘, we have 𝜎𝑏 = ℎ𝜎𝜑, and the standard deviation of 𝜑 scales just linearly by
height ℎ into the standard deviation of coordinate 𝑏.

22.2.3. 3D laser scanning
In a laser scanner, the laser light is directed in virtually any possible direction, physically, by
a rotating mirror, cf. Figure 22.2. The horizontal and vertical directions are measured very
accurately, typically with a precision of 0.003∘. The laser beam width is typically larger by a
factor of 2. Generally the laser scanner is programmed to scan (a large number of) discrete
directions, with a particular (user selectable) angular increment between them. The smallest
possible angular increment, or resolution, is generally in the order of 0.01∘.

The angular increment, together with distance, determines the point density on the surface
to be scanned (assuming here that the object surface is perpendicular to the laser beam). With
𝛼 the angular increment, and instrument height ℎ (cf. Figure 22.4), the distance 𝐷 between
two points is given by Eqs. (24.1) and (24.2), see also Figure 24.3. The density scales, in one
dimension, with 1

𝐷 , and in two dimensions with
1
𝐷2 .

A professional terrestrial laser scanner can reach a distance accuracy of a few millimeters,
over distances up to several tens of meters. The maximum distance can be hundreds of
meters, to even several kilometers.

For a detailed full survey of for instance a structure, as in Figure 22.3, a laser scanner is
setup (static) at several (discrete) positions around the building.
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Figure 22.5: Topview of a point cloud obtained by a laser scanner (as shown in Figure 22.2, setup at the black
square). Distances 𝑙 and horizontal angles 𝛼 are observed to target (object) points i, j, k and l.

22.2.4. Point cloud
As suggested by Figure 22.5, showing a horizontal crosssection, knowing the position and
orientation of the laserscanner instrument, and measuring horizontal direction, as well as dis
tance, allows one to determine the position of the target point, here in two dimensions (polar
coordinates), and in practice, when also measuring the vertical direction, in three dimensions
(spherical coordinates). The result of scanning the environment with a single setup of the
instrument, is a point cloud in the local coordinate system of the laserscanner. It is just a
(large) collection of individual points, which result from signal reflections on surfaces of ob
jects around the scanner. The points initially bear no relation between them (in principle we
do not know, even for points close together, whether they belong to the same physical object
or structural element, or not).

In processing laser scan data, two steps are typically taken. First, point clouds are aligned
with an existing 3Dmodel, or with other point clouds, see Figure 22.3 at right, where 14 point
clouds were aligned and connected together. In the example of Figure 22.6 two point clouds
have been observed (from two different positions), one is shown in blue, the other in red.
To connect and align point clouds and to mark reference and control points sometimes retro
reflective targets are used, similar to the one in Figure 4.18 at right. Then, point clouds can
be, quite directly, visualized (rendered), and human interpretation of the result may be quite
appealing. Though an automated mathematical reconstruction of the surfaces and objects is
generally challenging. A segmentation is done in order to group points using some similarity
criterion. Points in a point cloud can be converted into a threedimensional surface by means
of Delaunay triangulation (see Chapter 11), resulting in a triangular meshmodel. Alternatively,
assuming that multiple points physically lie on the same surface, one may want to fit geometric
primitives, like planes, spheres and eventually cubic volumes to multiple neighboring points.
In some applications one detects and fits cylinders or cones to the observed data, or even
other types of volumes. By separating terrain points from nonterrain points a Digital Elevation
Model (DEM) of the terrain, or a seafloor model can be created (cf. Chapter 24).

Good progress has been made in automatically fitting structural elements like beams and
walls to the millions of distance and direction measurements, linking points to straight lines,
circle arcs and planes, enabling automated gathering and generation of structural models.
Laser scanning can be used to create a 3Dmodel of an existing building or structure, for
which for instance no model or design is available (anymore).

Repeated laser scan surveys can be used to monitor structures, for instance to detect
deformation or damage, as cracks and loss of material surface and volume.
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Figure 22.6: Example of laser scanning the Symbiobridge. Two point clouds, one shown in red, the other in blue,
were merged, resulting in the visualization at right. This bridge — designed by TU Delft student Rafail Gkaidatzis
— was opened in 2016, in the Delft Technopolis Science Park area. Point cloud image at right [58] by Roderik
Lindenbergh, 2018.

22.2.5. Georeferencing
As shown with Figure 22.2, measurement of vertical angle 𝜁, horizontal angle 𝛼, and distance 𝑙
to an object, 3D Cartesian coordinates of that object become available, in the local coordinate
system of the laserscanner instrument. The position of the laserscanner may be unknown,
and the 𝑦axis will generally have an arbitrary unknown orientation (and for instance not be
aligned with ‘map North’ of the national coordinate system, see also Figure 9.2). Furthermore
one may wish to combine point clouds obtained with a laser scanner at different positions,
and possibly with different orientations.

This calls for georeferencing the point cloud, much similar to dealing with the exterior ori
entation of a photo camera in Chapter 19, and Section 19.4 in particular, linking the instrument
coordinate system to the terrain coordinate system. The threedimensional similarity transfor
mation to do this, is covered in Section 28.3. Generally, the scale factor in this transformation
will be 𝜆 = 1 or 𝜆 ≈ 1.

22.3. Application: AHN
In Figure 22.1 we considered a laser ranger, with a fixed looking direction, mounted on an
aircraft. In practice also a laser scanner can be mounted on an aircraft or helicopter, though
scanning is then typically restricted to one direction, sidewards, as the motion of the platform
will cover the other direction. This is referred to as linescanning  the terrain is scanned,
linebyline, as the aircraft moves forward. Similarly such a laser scanner can be mounted on
a road vehicle for the application of mobile mapping built environment.

With the principle of laser altimetry shown in Figure 22.1 a DEM can be created, which
can be considered as a ‘blanket draped over the terrain’. The laser signal reflects on the top
surface of objects, and thereby underpasses under buildings are not present in these models.
They are also referred to a 2.5D models, rather than 3D models; each (horizontal) position
has one and only one height.

In a Digital Terrain Model (DTM) commonly the groundlevel surface is represented (maai
veld) — the bare ground surface without any objects. A Digital Surface Model (DSM) includes
also natural and built features and objects of the environment. A Digital Elevation Model (DEM)
is used as a generic term for both DTM and DSM. You would use a DTM for flooding analysis
and drainage modelling, and a DSM for landscape and city modeling.

The Actueel Hoogtebestand Nederland (AHN) has been collected with airborne laser scan
ning. The initiative was taken in 1996 and the AHN2 has been flown from 2007 to 2012, for
all of the country, with a point density of 6 to 10 points per square meter. The flying height of
the aircraft or helicopter is typically around 400 meter. The elevations in the AHN pertain to
the terrain ground surface (‘maaiveld’), the socalled filtered version (DTM). In the unfiltered
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Figure 22.7: Example of laser scan product (AHN3). The height per pixel is shown in colorscale from blue through
green and yellow to red, with heights ranging in this example from 7 m to 97 m (NAP). The image at left shows
the area of Delft, about 7 km x 7 km, with the old city center in the middle, and North up (5 m x 5 m pixel).
The image at right shows a more detailed scene of the TU Delft campus, with the Aula and library on top (0.5 m
x 0.5 m pixel). The images present the Actueel Hoogtebestand Nederland (AHN)  version 3, at a half meter
resolution, unfiltered (with vegetation and buildings present)  Digital Surface Model (DSM), shaded relief. AHN
by Rijkswaterstaat; data retrieved from PDOK [59] under CC0 license.

version also vegetation is present (DSM).
The AHN2 is available as a Digital Elevation Model (DEM) with a 0.5 m gridsize. In total

this amounts to over 135.000.000.000 points. The elevations have a precision of about 5 cm
(standard deviation), with at most a 5 cm of systematic offset. Since 2014 the use of the AHN
is for free.

Data collection for the AHN3 started in 2015, and was released in 2019, also at a 0.5 m
gridsize. More information about the AHN can be found at [60]. The AHN4 will have an even
higher point density (up to 2025 points per square meter) and will be completed in 2022 for
all of the Netherlands. An example of AHN3 of the Delftarea is shown in Figure 22.7.

https://www.ahn.nl/
https://www.pdok.nl
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Radar

In this chapter we consider radar remote sensing, and in particular we focus on radar inter
ferometry. This is a rapidly developed new technology for Earth observation — it started to
emerge in the nineties of last century, see e.g. [61]. The technique is very much suited to
detect and precisely measure deformations of the Earth’s surface and topography, including
the builtenvironment and infrastructure. Surface changes between subsequent images can
be measured at millimeter scale, thanks to the centimeter wavelength carrier radio waves.

As discussed in Chapter 20, radar and Synthetic Aperture Radar (SAR) can be used to create
a twodimensional image. The radar is sidelooking and illuminating a strip of the Earth’s
surface, and as the instrument is flying forward, it creates, strip by strip, a twodimensional
array of pixels. In this chapter we focus on extracting geometric information from these radar
images.

23.1. Fractional phase of radar signal
In addition to what is stated in Section 20.3 about recording the intensity/amplitude, also the
phase of the carrier wave of the incoming signal for each pixel is recorded, with the phase
being a (precise) measure for the geometric range. The use of phase (or phase difference)
for the measurement of distance was outlined in Section 20.1.2. The traveltime of the signal
from transmitter to reflector, and back to the receiver, determines the phase difference of the
received radar signal carrier and the carrier on board the transmitter/receiver. As the used
radar wavelength is generally in the order of a few centimeter, cf. Chapter 21, the distance
can be measured, in principle, very precisely (in the order of millimeters). Though, generally
the number of full wavelengths occuring in the difference, the socalled ambiguity, 𝑘 in (20.4),
is not known. Only the fractional phase difference is measured. Any actual/physical phase
difference (between incoming and outgoing signal) is cut to fit in the interval [−𝜋,+𝜋⟩ radians;
the actual phase difference got wrapped into this interval.

Figure 20.4 showed the amplitude for each pixel, in a grayscale image. Figure 23.1 shows
the corresponding phase. The image seems to show just random phase values. Different
pixels in the terrain will have different heights, thereby different distances to the radar sensor,
and hence lead to different phase values. As the ambiguity per pixel is unknown, and only the
fractional phase is shown, the image looks randomized. No useful interpretation can be given
to this image.

As will be clear from Figure 20.5, a pixel does not represent a single discrete point in the
terrain, but instead a certain area. Typically, for spaceborne radar, the pixel size on ground
is in the order of a few meters to tens of meters. Consequently the amplitude and/or phase

217



218 23. Radar

Figure 23.1: Example of radar phase image. Fractional phase per pixel is shown in a colorscale from red to blue,
representing −𝜋 and +𝜋 radians respectively. The image shows the area of Delft, acquired, on Nov 1, 2015, by
the DLR TerraSARX satellite [53], cf. Figure 20.4. The frequency of the radar signal is 9.65 GHz (Xband), and
the corresponding carrier wavelength is 3.1 cm.

for a pixel result from measurement on the summation of all reflections from that area. For
a pixel, two extreme cases of reflection can be distinguished: point scattering and distributed
scattering. With point scattering, a strongly reflecting object (resulting in a large amplitude
signal) is dominating the measurement; for instance there is a facade or roof of a building
within the pixel area on the ground, at appropriate angle, to reflect a lot of the incident radar
signal. Such an object is referred to as a point scatterer. With distributed scattering a large
number of small scattering objects form the total response together; for instance a dike with
a top layer constructed of cobble stones, see Figure 23.2.

23.2. Radar interferometry
A radar, as it is based on the measurement of distance, may not be able to distinguish between
objects at different locations with different heights: the signal response from a low building
near the satellite ground track and the response from a tall building further away from the
ground track may arrive at the very same time, and end up in the very same pixel, see also
the discussion with Figure 20.10.

In order to resolve objects at different elevations, another radar image is needed, which is

• acquired at the same time from a different orbital track (e.g. by a tandem radar satellite
mission  single pass interferometry), or,

• acquired at a separate time with the same satellite (hence, at another passover of the
satellite  multipass interferometry)

Then the principle of interferometry is applied, cf. Figure 18.9. An interferometric image is
created, in which the phase measurements of the two images, with slightly different imaging
geometries, are combined (effectively differenced). The solution of using two images, rather
than one, is the same as applied to photogrammetry. With a single optical photo, objects in the
same direction (but possibly at different elevations) can not be distinguished, and therefore a
second optical image is used (taken not too far away from the first one), to allow for three
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Figure 23.2: Classification of reflecting objects in radar imaging [62]. A point scatterer is a strongly reflecting
object, as the roof of a building. Distributed scattering occurs for instance on a dike with cobble stones. Coherent
scatterers are permanent — they are constantly present in sequences of radar image; incoherent scattering is
caused by objects which may move in between two image acquisitions.

Figure 23.3: Geometry of radar image acquisition for interferometry. The positions M and S indicate the two radar
sensor positions (forming the socalled baseline 𝑏), and point P is the  to be imaged  object in the terrain. In
reality, this plane, with points M, S and P, is positioned in the three dimensional space.

dimensional reconstruction of the imaged Earth’s surface and topography (see Section 19.3
— stereophotogrammetry/vision).

The imaged scattering objects preferably should not change between the two radar image
acquisitions — the scattering should be coherent. The images should be sufficiently similar.
Therefore — to form an interferogram — the two images should have only a slightly different
geometry, as the radar backscatter on objects is generally much dependent on the viewing
direction. Vegetation is a typical example of yielding incoherent scattering, as it will change
over time (grow). The objective of radar interferometric analysis is the retrieval of (geometric)
information from pixels showing sufficient coherent scattering.

Figure 23.3 shows the geometry of two radar image captures, to create a radar interfer
ogram. Assuming a small angle at the object P, the difference in range from M to P, and S
to P is Δ𝑙. This difference is represented by the interferometric phase difference, similar to
Eq. (20.5). However, as noted in the previous section, only the fractional phase difference
(between the two images) can be measured, and there is an ambiguity present, as indicated
in (20.4) and (20.8); there is an unknown number 𝑘 of full wavelengths involved.
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Figure 23.4 shows an example of a radar interferogram, constructed from two radar
(phase) images, of which an example was shown in Figure 23.1; the interferogram shows
actually the phase difference (the two contributing phase measurements are still wrapped,
and the phase difference is kept within the interval from −𝜋 to +𝜋).

Figure 23.4: Example of radar interferogram. Fractional phase per pixel is shown in a colorscale from red to blue,
representing −𝜋 and +𝜋 respectively. The image shows the area of Delft, about 7 km x 7 km, with the old city
center in the middle, and (approximately) North up, acquired by the DLR TerraSARX satellite [53], cf. Figure 23.1.
The interferogram follows as the difference in phase between two image acquisitions, namely on Nov 1 and Nov
12, 2015.

Neighboring pixels in the terrain may have different heights, and this leads to the con
clusion that, in principle, every pixel will have its own unknown phase ambiguity; the phase
ambiguities, even of neighboring pixels, may be unrelated. Phase unwrapping is needed to
obtain a continuous interferometric phase map. Though some topography can be recognized
already in Figure 23.4, still not too much information can be retrieved from just a single inter
ferogram alone.

23.2.1. Digital Elevation Model (DEM) [*]
As a side step, we mention that from a radar interferogram, constructed from two radar
(phase) images, in principle a Digital Elevation Model (DEM) can be reconstructed. With
two different satellite positions, as shown in Figure 23.3, essentially a ‘stereoscopic’ effect is
realized (based on a resection with distances). The phase difference from one pixel to the next,
may be different in the two images, and this allows one to reconstruct a height difference.

The longer the baseline between the two image acquisitions (cf. Figure 23.3), the larger
this ‘stereoscopic’ effect is, i.e. the better height differences in topography can be observed.
The height difference accuracy is currently in the order of meters to tens of meters. The
countereffect of a longer baseline is that phase unwrapping gets more difficult.

23.3. Measuring deformations
In differential interferometry the effect of topography is removed by modeling the phase using
a reference surface or an existing Digital Elevation Model (DEM) and the orbit parameters of the
satellite. Hereby the ‘stereoscopic’ effect is removed from the interferogram. What remains
are phase differences due to changes in the positions of objects or the Earth’s surface level



23.3. Measuring deformations 221

Figure 23.5: Principle of radar interferometry for deformation monitoring. The radar takes an image of the surface
with points P and Q in the original state, indicated in blue, and another image, indicated in orange, after a slight
landuplift has taken place in the area around point Q (point Q moved to point Q’).

(deformation). In case of small changes they are (well) within a wavelength (of the used radar
signal). Otherwise assumptions about the spatiotemporal smoothness of the deformation are
needed to resolve the phase ambiguities. A sudden jump, of one full wavelength (or multiples),
in one pixel may go unnoticed.

In Figure 23.5 the principle of measuring deformation of the Earth’s surface is shown.
In this simple example we omit the fact that the phase measurement is ambiguous; for the
moment the distance readily follows as (20.5). Based on the first image acquisition, shown
in blue, from satellite position M, the received radar signal response is mapped onto a row of
pixels using a simple flat plane as a reference Earth’s surface here (cf. Figure 20.5). Similarly,
once point Q has moved to Q’, while point P is a stable reference point, a second image is
acquired, shown in orange, from satellite position S. In this example satellite positions M and S
nearly coincide. Though usually the socalled baseline 𝑏 between M and S is short, cf. Figure
23.3, in practice the interferometric phase is corrected for the difference in viewing geometry
by using a reference surface. After that, the deformation of point Q to Q’ (for its component
in the direction of the satellite) can be retrieved, based on the phase difference between pixel
P and Q observed at M, and the phase difference between P and Q’ at S. As radar relies on the
measurement of distance, object or surface position changes in the direction perpendicular to
the lookdirection (line of sight) of the radar, cannot be detected (that is in the direction of
𝑏⊥). With differential interferometry deformations are obtained in a relative sense, i.e. with
respect to another point within the image (Q with respect to P).

Radar interferometry can offer full spatial coverage of the imaged area, rather than so
called point measurements as for instance taken with GPS. And, as a remote sensing technique,
radar interferometry can do this remotely. Radar signals penetrate through clouds, and hence
the technique offers allweather operation, day and night.

A couple of aspects needs attention though. The first one is spatial decorrelation, and
refers to the fact that from different viewing angles, the same scene may look different. The
viewing directions of two images used to form an interferogram should be not too different, in
order to maintain sufficient coherence of the interferometric phase. In Figure 23.3 the distance
between points M and S should be not too large. The second one is temporal decorrelation,
and refers to the fact that the scene itself may change over time, and hence coherence of the
interferogram may get lost — the two images got too different. For instance in a vegetated
area, vegetation may grow, and the scene no longer looks the same. Current radar satellite
missions have a socalled repeat time in the order of several days to several weeks. The third
aspect is about atmospheric delays. Radar signals travel from a satellite, through the Earth’s
atmosphere, to the Earth’s surface (and back), and the signal may, thereby, get extra delayed,
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Figure 23.6: The Dutch Ground Motion Service (in Dutch: Bodemdalingskaart Nederland): the map shows the rate
ofchange in millimeters per year, of land surface level, with millimetric precision, covering all of the Netherlands,
and is updated a few times per year. Image courtesy of Nederlands Centrum voor Geodesie en Geoinformatica
(NCG) [64].

resulting in an additional phase offset. The atmospheric delay may change over the area, and
hence the corresponding phase delay may vary across the image, and, it will also change over
time, just like the weather. Since the time interval between two image acquisitions is generally
one week or more, the atmospheric phase delay is typically uncorrelated here in time (this is
likely also the effect we see in Figure 23.4).

Persistent Scatterer Interferometry (PSI) is a multiepoch interferometric radar analysis
technique to overcome — to some extent — spatial and temporal decorrelation. PSI relies on
consistently coherent scatterers, which are typically buildings (in urban areas) or infrastructure
of concrete and steel (like roads and rail), with highamplitude reflections. They are pixels
which can be easily identified in the image, and represent discrete objects, referred to as
pointwise coherent scatterers. They represent relatively stable ground targets, and these
permanent scatterers pose minimal spatial and temporal decorrelation through a whole stack
or time series of images. PSI can use all acquired images, hence a full time series over a period
of months or even years, to estimate the kinematic (deformation) behaviour for consistently
coherent points. It allows for monitoring deformation behaviour of for instance buildings,
embankments, dikes, dams and railroads with subcentimeter accuracy.

23.3.1. Dutch Ground Motion Service
As an application of differential interferometry, or differential Interferometric Synthetic Aper
ture Radar (InSAR), next to GPS and absolute gravity measurements, the ‘actuele bodemdal
ingskaart Nederland’ (The Dutch Ground Motion Service  surface and object motion map of
the Netherlands) was launched in 2018, see [63].

Pumping water out of polders, extracting natural resources and construction of under
ground infrastructure, like a tunnel, may all cause subsidence of the land surface, and filling
old mines with water, water suppletion in closed underground mining systems, may cause
actually a rise of the land surface. This is shown in Figure 23.6.

https://bodemdalingskaart.nl/
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As mentioned in Section 21.1.2, electromagnetic waves do not really propagate well in water,
and therefore acoustic signals are used instead for remote sensing in water. In this chapter an
introduction is given to acoustic sounding. An acoustic signal is transmitted, it travels forth to
a reflector (e.g. the seafloor), gets reflected, and travels back to the receiver, just as shown
in Figure 18.5. The distance is measured by means of twoway ranging. This is still the main
idea here with active sonar.

In this chapter we consider single beam and multibeam echosounders, and address the
concept of footprint. We touch on seafloor surveying of the North Sea. Then optionally, we
go in more detail on the shape of the pulse, once it got reflected by the seafloor and received
by the sonar, that is, we consider the shape of the received echo. Finally we briefly address
seafloor classification.

Some preliminaries on the audio frequencies and the propagation of acoustic waves in
a medium, like water, are covered in Section 21.1.2, and in Section G.3 of the Appendix
respectively.

24.1. Introduction
In order to create hydrographic maps and Digital Elevation Models (DEM) of the seafloor, for
instance for the purpose of underwater construction works (e.g. offshore platforms, pipe
laying and dredging), bathymetric surveys are performed. Bathymetry is concerned with the
underwater depth of lake, river, sea and oceanfloors. The name ‘bathymetry’ has its origin
in Greek, and literally means ‘measuring depths’. Its purpose is to acquire information about
the underwater topography. The reference level for measuring depth at sea is covered in
Section 35.4.

In the old days, bathymetry involved the measurement of ocean depth through depth
sounding. A premeasured heavy rope was lowered over the ship’s side until it touched the
sea bottom. Today sounding is done using sonar. The title of this chapter could read ‘sound
ing using sound’, to refer correctly to the process of measuring water depth using acoustic
signals. A type of sonar is the echo sounder (in Dutch: echolood), which is an instrument
mounted beneath, or over the side of a boat, transmitting an acoustic signal, a socalled ‘ping’,
downward to the seafloor, and measuring the twoway signal traveltime, to determine the
distance (again cf. Figure 18.5, but then in a vertical sense, rather than horizontal). The echo
sounder is generally looking straight down (similar to laser altimetry in Figure 22.1), but it can
also look sidewards (sidescan), or in multiple directions simultaneously (multibeam).

Figure 24.1 at left shows two compact and portable echo sounders for use in shallow water,
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Figure 24.1: At left: Echo logger EA400 and AA400 echo sounder installed in tank for testing. Next, a sandbed is
supplied on the floor of the tank, and the tank is filled with water. At right: actual depth measurements by the
EA400 instrument in the tank as a function of time (intensity of the received signal is shown according to the color
scale at right). The sandbed surface is about 0.40 m below the echo sounder. Photographs by Ruurd Jaarsma
[65], July 2019.

e.g. for sediment monitoring. They work at a frequency of 450 Hz, with a beamwidth of 5
degrees (single beam), and their operating range is from 0.15 m to 100 m (50 m).

The graph at right, in Figure 24.1 shows the depth measurements as a function of time
(time axis horizontal, covering 10 minutes of time). The vertical axis goes down from 0.0 to
1.0 m. The graph shows, in this case, a clear single reflection on the sandbed, at a depth
of about 0.4 m. The intensity of the received signal is indicated by color, according to the
colorbar at right, from blue, through green, to red.

In practice, the depth is measured from a shipborn sensor, and this means that, in order
to deliver useful results, during bathymetric surveys the position (and attitude) of the ship
or vessel need to be determined, its draught, and possibly also the actual sealevel as well.
These subjects are not covered in this chapter.

24.2. Single Beam EchoSounder (SBES)
In practice, one can not create an infinitesimally small (narrow) beam with acoustic sounding.
First of all the transducer antenna has finite dimensions, and secondly, the radiation pattern of
the antenna does not allow for a transmission in one single discrete direction, cf. Figure 21.5.
The signal beam has a certain width, indicated by angle 𝛼 in Figure 24.2. Therefore the dis
tance measurement is no longer a pointtopoint measurement. The transmission ‘illuminates’
a certain area of the seafloor, called the footprint. For the radius of the footprint area, it holds
that 𝐷2 = ℎ tan

𝛼
2 , where we assume, as shown in Figure 24.2, that the acoustic beam incides

the seafloor surface perpendicularly. For small angles 𝛼, we can also write

𝐷 ≈ ℎ tan𝛼 (24.1)

Some values are presented in Table 24.1 for a beamwidth of 3 degrees. Obviously, the larger
the water depth, the larger the footprint.

Typically audio waves with frequencies in the order of 10  100 kHz are used for sounding. A
larger frequency bandwidth yields a better range resolution and accuracy, see Section 20.1.1
(pulsebased ranging). For precision bathymetry a transducer operating around 200 kHz is
used, as it is suitable for up to 100 meters in depth. Deeper water requires a lower frequency
(down to 1020 kHz). The higher the frequency of the audio waves, the more they suffer
from absorption/attenuation (see also Appendix G.1.1 on link budget), and the less far they
penetrate in the medium (water). A subbottom profilers uses an even lower frequency, and
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Figure 24.2: Single Beam Echo Sounder (SBES). The beam is typically 2.5 to 3.0 degrees wide, and this leads to
a footprint diameter 𝐷. In this diagram the footprint is a circular area.

ℎ [m] 𝐷 [m]

10 0.52
20 1.05
50 2.62
100 5.24

Table 24.1: Diameter of footprint 𝐷 (in [m]) as a function of water depth ℎ (in [m]) for a beamwidth of 𝛼 = 3∘,
according to (24.1).

these waves can penetrate into the seafloor beyond the surface by tens to hundreds of meters.
Reflection seismics uses (even) lower frequencies (in the order of 101000 Hz) to go even
deeper.

24.3. MultiBeam Echo Sounder (MBES)
In practice for large area seafloor mapping, a multibeam system is used, rather than a single
beam. Figure 24.3 shows the principle of a MultiBeam Echo Sounder (MBES). In this figure
only two beams are shown, the one straight down, and on ‘sidelooking’ beam. In practice
there are many (tens of) beams, regularly spaced, as to integrally cover a certain swath.

As can be seen from this figure, the footprint diameter for a ‘sidelooking’ beam is larger

Figure 24.3: MultiBeam Echo Sounder (MBES). At left, a single ‘ping’ is transmitted, and by means of a receiver
array, consisting of multiple antennas, the return signal is split into many different beams. This is done through
mathematical signal processing, and relying on a principle similar to the one shown in Figure 18.8 with 𝑑 = 𝑏 cos𝜃;
signals from different directions arrive with different time intervals at Rx1 and Rx2. Beam widths are typically in
the order of 𝛼 = 0.5∘ to 1.5∘, and the range (angle 𝜑) can reach up to 75∘ in both sideward directions. At right,
the swath covered by the MBES is shown.
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ℎ [m] 𝐷 [m] 𝐷 [m]
(𝜑 = 0∘) (𝜑 = 75∘)

10 0.17 2.79
20 0.35 5.57
50 0.87 13.94
100 1.75 27.87

Table 24.2: Diameter of footprint 𝐷 (in [m]) as a function of water depth ℎ (in [m]) for a beamwidth of 𝛼 = 1∘,
according to (24.2) for look angle 𝜑 = 0∘ and 𝜑 = 75∘.

than for the beam looking straight down. With 𝑏 = ℎ tan𝜑 and tan(𝜑 + 𝛼) = 𝑏+𝐷
ℎ we obtain

𝐷 = ℎ(tan(𝜑 + 𝛼) − tan𝜑) (24.2)

Some values for the diameter are presented in Table 24.2 for a beam width of 1 degree.
Note that for a ‘sidelooking’ beam, the area is no longer circular. Note that for 𝜑 = 0,
Eq. (24.2) reduces to (24.1).

Using the goniometric identity tan(𝜑+𝛼) = tan𝜑+tan𝛼
1−tan𝜑 tan𝛼 , with tan𝜑 =

𝑏
ℎ yields, after some

manipulations,

𝐷 = (ℎ2 + 𝑏2) tan𝛼
ℎ − 𝑏 tan𝛼 ≈ (ℎ2 + 𝑏2) tan𝛼

ℎ = (𝑏
2

ℎ + ℎ) tan𝛼

where the approximation holds for (very) small angles 𝛼. The diameter 𝐷 is now expressed
as a function of angle 𝛼.

Surveys with a MBES typically result in point clouds, quite similar to the result of laser
scanning in Chapter 22.

24.4. Seafloor surveying
Figure 24.3 at right shows that a MBES, when it is regularly measuring, while the vessel sails
forward, by its swathwidth, will cover a strip of the seafloor. The area is surveyed much
similar as shown in Figure 19.8 with airborne photogrammetry.

Rijkswaterstaat is responsible for periodic surveying and monitoring the North Sea coast,
inner waters with large water bodies such as the Waddenzee and IJsselmeer and major rivers
and canals, and the approach routes to the Rotterdam and Amsterdam/IJmuiden harbors, see
[66].

The yearly survey of the North Sea coast consists of measuring height and depth profiles
along transects (in Dutch: raaien) about every 250 m, from just over the first dune into
the North Sea, typically up to about 800 m into the water, which corresponds to a depth
of about 12 m (12 m NAP; these water depths are reported in NAP). These profiles are
referred to as Jarkus, short for the yearly survey of the coast by means of profiles (in Dutch:
jaarlijkse kustprofielen). These measurements are typically done by laser altimetry on shore
(Figure 22.1) and by echo sounding offshore, with a precision of better than 1 dm.

Once every few years, a full area survey is carried out of each section of the Dutch North
Sea coast down to a depth of about 20 m (in Dutch: vaklodingen programma). The results
are provided as a seafloor map interpolated to a 20 m x 20 m grid.

24.5. Received pulse shape [*]
In this analysis we use, as a signal, a simple rectangular pulse with amplitude 𝐴 and time
duration Δ𝜏, it is shown in Figure 24.4.
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Figure 24.4: Power of transmitted simple pulse signal as a function of time 𝑡, with amplitude 𝐴 and duration Δ𝜏.

Figure 24.5: Power of received signal, which is delayed and attenuated, but still of the same shape as the trans
mitted signal.

In ideal circumstances, and considering ranging from pointtopoint, the received signal —
the echo — is delayed (because of the traveltime). In practice it is also attenuated, as shown
in Figure 24.5.

When in addition there is not a single point of reflection, but instead a whole area, the
footprint, which reflects the transmitted audio signal, see Figure 24.2, the pulse gets even a
different shape.

We assume that the transmit antenna distributes the signal power/intensity uniformly over
the full beam width (equally in all directions) The signal first reaches the seafloor in the center
of the footprint, at time 𝑡 = ℎ

𝑣 , where 𝑣 is the signal propagation speed. Then, as a function
of time, the reflection point moves radially outward; the ‘illuminated’ area is a circle which
gets bigger and bigger. When the radius of the circle is 𝑟, the slant range is √ℎ2 + 𝑟2, and
the pulse just arrives there at time 𝑡 = 1

𝑣√ℎ
2 + 𝑟2. For small angles 𝛼 this can, through

𝑡 = 1
𝑣
√ℎ2(1 + 𝑟2

ℎ2 ) with
𝑟
ℎ small, be approximated (first order Taylor series) by

𝑡 ≈ ℎ
𝑣(1 +

𝑟2
2ℎ2 )

Hence, once the signal has reached the seafloor the circle radius 𝑟 increases by the square
root √𝑡 of time 𝑡. Thereby, in this approximation, the ‘illuminated’ area (= 𝜋𝑟2) increases
linearly with time 𝑡 (and the rate of change is 2𝜋𝑣ℎ). Next, we assume a 100% reflectivity,
i.e. all incident acoustic signal energy is reflected back to the receiver on the ship (perfect
backscatter). Finally we need to account for the fact that the pulse has to travel back as well
to the receiver. For the signal reflected in the center of the footprint this takes (another) ℎ

𝑣
seconds, and for the signal reflected at radius 𝑟 this takes 1

𝑣√ℎ
2 + 𝑟2 seconds. The received

pulse consequently gets shaped as shown in Figure 24.6.
Note that we assumed that the pulse duration Δ𝜏 is such that the full footprint area gets
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Figure 24.6: Power of received signal, which got deformed due to reflection by the footprint area. Any signal loss
in the medium is ignored (no attenuation). The total signal power (area under the curve) is the same as for the
transmitted signal shown in Figure 24.4. The slope of the increase is 𝜋𝑣ℎ.

illuminated. If the pulse is short, then the end of the pulse may already arrive in the footprint
center, whereas the start of the pulse has no yet left the footprint area (not yet at the boundary)
 in that case the shape of the signal in Figure 24.6 is different, but still similar.

The shape in Figure 24.6 already shows that in practice measuring the traveltime (and
thereby the depth) by means of leading edge detection on the received signal is less trivial
than one would initially assume. The rectangular pulse gets deformed, in these still ideal
conditions, and the perfectly right leading edge gets lost.

Figure 24.7: At left a calibration dock for acoustic surveys, upon construction and not yet flooded. The rock
material of different dimensions can be clearly seen, as well as the concrete blocks and the two 2 m x 2 m
calibration plates in the frontcenter. At right the corresponding image, of the center part, resulting from the
acoustic survey, once the dock was flooded. Image courtesy of Eric Peeters, Operations Manager Survey at Van
Oord Dredging and Marine Contractors [67]; both images taken from the presentation ‘PUMA  Project organisatie
Uitbreiding Maasvlakte’, 27 September 2012.

24.6. Seafloor classification
Though a bathymetric survey is primarily focussed on measuring depth (i.e. geometric infor
mation), one might be interested — through audiometry — to acquire also thematic informa
tion. The seafloor can consists of different materials, from sludge, mud and sand, to clay,
gravel, cobble stone and rock for instance (according to increasing hardness). Mud has a low
impedance contrast with water and consequently yields only little signal reflection, whereas
rock has a high impedance contrast with water. Therefore, next to traveltime of the acoustic
signal, its amplitude or intensity provides us with information revealing the type of sediment.
To obtain even more information from backscatter intensity, the survey can be carried out us
ing multiple frequencies, as the (acoustic) impedance depends on the frequency of the audio
wave. For example, a higher frequency signal is reflected by the top mud layer, while a lower

https://www.vanoord.com/
https://www.vanoord.com/


24.6. Seafloor classification 229

frequency signal is reflected only by the underlying hard surface.
The seafloor generally presents relief, also on a local scale, and the surface is not smooth,

cf. Figure 24.7. The interaction between acoustic wave and seafloor is also driven by the size
of grain and stone/rock. The shape of the echo, as a function of time, as discussed in the
previous section may reveal seafloor roughness. With stones and rock for instance, part of
the signal may penetrate in between the stones and rock, and get reflected by an underlying
layer, thereby resulting in a different shape of the total echo.





25
Radiometric sensing

Remote sensing is about collecting information about an object without being in physical con
tact with the object, that is, collecting information from a distance. So far this part focussed on
geometric aspects of remote sensing, in order to determine position, shape and/or orientation
of objects. For radiometric aspects one is concerned with measurement of radiant energy.
The primary parameter of the received electromagnetic signal is the amplitude (intensity),
rather than its time delay or phase offset as in earlier chapters. The subject of this chapter
can be termed as ‘interpretative’ remote sensing.

Optical remote sensing was briefly introduced in Section 18.1.2, and the geometric aspects
were covered in more detail in Chapter 19 on photogrammetry. Optical remote sensing makes
use of visible, nearinfrared and shortwave infrared sensors, cf. Table 21.1, to acquire images
of the Earth’s surface and its topography by recording solar radiation reflected by the surface
and objects on it.

The process of image acquisition, using a sensor array, is shown in Figure 25.1. For every
pixel, the brightness, or intensity, in a spectral band of interest, is measured and visualized
here in a grayscale (from zero intensity (0) to maximum intensity (255)). Rather than using a
twodimensional array, satellites often employ a linear or onedimensional array, perpendicular
to the flight direction. Through the forward motion of the satellite, and regularly repeating the
acquisition using the single line of sensors, eventually a twodimensional image is obtained
(socalled pushbroom image acquisition).

A digital image basically is a two dimensional array of individual picture elements — pixels
— arranged in rows and columns. The pixel is the smallest entity or physical unit in the image.
Each pixel represents a certain area on the Earth’s surface. The pixel has an intensity value,
and a location address in the two dimensional image (row and column number). In remote
sensing the intensity value represents the measured physical quantity, such as the (amount of)
solar radiance in a certain wavelength band (e.g. visible light) reflected from the ground, or
emitted infrared radiation. In a digital image, the intensity value is stored as a digital number.
For example with an 8bit representation, there are 28 =256 possible (intensity) values (from
0 to 255). The number of bits determine the radiometric resolution of the image.

In this chapter, we cover the interaction of radiation, as used in remote sensing, with an
object, be it a brick in road surface, a water droplet in the atmosphere, or a leaf of a tree.
Radiometric sensing allows one to make thematic inferences about the object being sensed
(as for instance color or watercontent of vegetation).
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Figure 25.1: Image acquisition using a 4by4 array of Charge Coupled Device (CCD) sensors. Each pixel is exposed
to incident radiation and builds up an electric charge proportional to the intensity of the incident radiation. The
charge of each pixel is subsequently converted into a digital value (represented here by 8 bits), resulting in a
digital image, which is actually a matrix of intensity values.

25.1. Introduction
All objects absorb and reflect light in different ways. The amount of light an object reflects
in some wavelengths and absorbs in others, is an indication of its properties and can tell us
a lot about that object. As an example, suppose there are two leaves on a table: one is a
healthy leaf and another one is a dry leaf (Figure 25.2). You are asked to judge which one is
the healthy leaf and which one is the dry one without touching the leaves. Most people would
simply come to the conclusion that the green leaf is healthy and the yellow or brown one is
the dry leaf, based on its color and texture.

In this example, the photons (light) bouncing back off the leaves to your eyes enable you
to determine whether the leaf is healthy, and you do not need to come in physical contact with
the leaves to make that judgment. Remote sensing works in a similar way. Remote sensors
collect data about objects by detecting the amount of light that is reflected from the objects
without having any form of physical contact. Observing and measuring physical (e.g. shape,
texture) and chemical attributes of the Earth’s surface and the atmosphere help scientists to
analyze and understand the changes of the Earth’s environment and to develop models and
plans for the future.

Sensors onboard remote sensing satellites measure and record the electromagnetic energy
in visible light (blue, green, and red light), and also wavelengths of radiant energy that human
eyes cannot see (e.g. ultraviolet and infrared ‘light’). We classify radiant energy by wavelength,
which we typically measure in micrometers (or nanometers). The spectrum of electromagnetic
radiation was presented in Table 21.1.

Remote sensors measure the reflected and emitted light from objects at specific wave
lengths. ‘Spectroradiometers’ are used to detect specific wavelengths of light, also called
‘bands’ or ‘channels’. Scientists design ‘spectroradiometers’ to be particularly sensitive to the
bands that tell them most about the objects of interest, based on their knowledge of how
objects interact with light at certain wavelengths. Specific bands reveal a lot of details about
vegetation, while other bands are suitable for obtaining information about the ocean surface
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Figure 25.2: Healthy leaf vs dry leaf.

or clouds.
Down here on Earth, we can easily identify vegetated areas or distinguish healthy thick

vegetation from dying sparse or stressed crops. However, it is not that easy for a satellite
observing the Earth from an altitude of about 700 kilometers. Instead, scientists obtain in
formation about vegetation covers from remote sensing images by interpreting the recorded
signal (i.e. the amount of energy received) by remote sensors.

We can distinguish remote sensing in active and passive remote sensing. For active remote
sensing, the instrument first ‘illuminates’ the object of interest by transmitting radiation, and
next receives back the reflected radiation, as for instance with radar in Section 20.3. With
passive remote sensing one relies either on reflected radiation of the Sun, or on radiation by
the body/object itself (thermal radiation). In this chapter we primarily focus on passive remote
sensing.

25.2. Example: Sentinel2 imagery
Before we go into more detail on the physics of electromagnetic radiation, this section presents
a basic example of radiometric remote sensing using data acquired with the multispectral
sensor on board the two ESA Sentinel2 satellites [68]. These two satellites are in a Sun
synchronous orbit at almost 800 km altitude, cf. Section 20.5.

Radiometric measurements are done in specific ranges of wavelength (or conversely,
ranges of frequency) of the electromagnetic spectrum, cf. Table 21.1. These spectral win
dows are referred to as bands. Each of the two Sentinel2 satellites carries a multispectral
sensor, which can observe in 13 spectral bands. Figure 25.3 shows the measured intensity
in three of these bands, all in the visible light part of the spectrum. These bands each cover
typically a bandwidth of 3060 nm. The intensity (of the reflected Sunlight) is represented
(originally) by a 12bit number, allowing for a measurement range from 0 (nothing received at
all) to 4095 (maximum intensity received), in this band, cf. the matrix in Figure 25.1. Actually,
with Sentinel2, the image is captured rowbyrow as the satellite is flying forward (covering
a 290 km swath, or fieldofview). This is referred to as the pushbroom principle. The sensor
consists of a linear array of elements or detectors, rather than a full matrix.

Next, a ‘truecolor’ image is created, by combining (merging) the three images acquired
in the blue, green and red parts of the visible spectrum. The result is shown in Figure 25.4.
Now each pixel carries an intensity value for Red, Green and Blue (RGB).

Similarly, figure 25.5 shows a ‘truecolor’ image of the SouthWestern part of the Nether
lands. This is obtained using three full images, in blue, green and red, as acquired by the
Sentinel 2 satellite. One image covers about an area of 110 km by 110 km, at a 10 m pixel
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Figure 25.3: Measured intensity in band 2 (492 nm for blue, at left), in band 3 (560 nm for green, in middle), and
in band 4 (665 nm for red, at right). Data from ESA Sentinel2 satellite (Copernicus Sentinel data 2019) obtained
through the SentinelHub [1], CC BYNC 4.0, covering the area of Delft, 7 km x 7 km, with the old city center in
the middle, and North up.

Figure 25.4: ‘True color’ image, created by combining the three images of Figure 25.3. Data from ESA Sentinel2
satellite (Copernicus Sentinel data 2019) obtained through SentinelHub [1], CC BYNC 4.0, covering the area of
Delft, 7 km x 7 km, with the old city center in the middle, and North up.
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Figure 25.5: ‘True color’ image, created by combining the RedGreenBlue (RGB) images, of the SouthWestern
part of the Netherlands. Data from ESA Sentinel2 satellite (Copernicus Sentinel data 2019) obtained through the
SentinelHub [1], CC BYNC 4.0, image taken on August 24th, 2019 (10:56:43 UTC), with Coordinate Reference
System (CRS) WGS84 in UTM zone 31N projection.

resolution. The data shown are socalled level 1C data, which is reflectance from the Earth,
observed by the satellite in space (see actually (25.5), as a passive sensor relies on reflected
Sunlight). Level 1C data refers to the Earth, including the atmosphere. Socalled level 2 data
is also available, which has been corrected to the bottom of the atmosphere, and is thereby
better suited for observation and interpretation of the Earth’s surface. In the example shown
in this section, a cloudfree day has been selected (cloud coverage of only 0.4%), so that
effectively, there is not much difference between the two. L1C data has been resampled and
geometrically corrected (orthorectification).

25.3. Physics of electromagnetic radiation
The sun, as the main source of energy for the Earth, radiates electromagnetic energy in a
wide range of wavelengths. The electromagnetic energy is mainly reflected and absorbed by
objects in the 0.4  3 𝜇m spectral range. At longer wavelengths, all objects at temperatures
above zero Kelvin emit thermal radiation according to Planck’s law.

A black body, defined as an idealized substance that absorbs all electromagnetic radia
tion falling on it, and emits (an equal amount of) electromagnetic radiation according to its
(constant) temperature, follows Planck’s blackbody equation:

𝐿(𝜆, 𝑇) = 2ℎ𝑐2
𝜆5

1

𝑒
ℎ𝑐
𝜆𝑘𝑇 − 1

(25.1)

where 𝐿 (𝜆, 𝑇) is the energy emitted per unit time (Watt per steradian per cubic meter) at
wavelength 𝜆 (meter), ℎ is the Planck constant (6.626 ⋅ 10−34 Js), 𝑘 is the Boltzmann constant
(1.381 ⋅ 10−23 J/K), 𝑐 is the speed of light (2.998 ⋅ 108 meter/second), and 𝑇 is the blackbody’s
temperature in degrees Kelvin. The Planck law gives a distribution of the emitted energy as a
function of wavelength 𝜆, at a given temperature 𝑇 (see Figure 25.6).

Figure 25.6 illustrates that the distribution of emitted energy, at different temperatures
(red, green, blue and black curve), peaks at different wavelengths. The relationship between
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Figure 25.6: Black body radiation distribution of emitted energy at different temperatures, presented as radiance
in kW per steradian, per squared meter, per nanometer. The effective temperature of the Sun is about 5800 K.
Graph by Darth Kule  own work, taken from Wikimedia Commons [9]. Public Domain.

the temperature (𝑇) of a blackbody and the wavelength in [m] of the peak of the radiation
distribution is given by Wien’s law:

𝜆𝑚𝑎𝑥 =
2.898 ⋅ 10−3

𝑇 (25.2)

According to Wien’s law, hotter objects emit most of their radiation at shorter wavelengths
and that is why they appear to be ‘bluer’. This means that objects of higher temperature
have more energy, and therefore emit photons of higher energy (shorter wavelength). For a
constant velocity (the speed of light here), wavelength is inversely proportional to its frequency
(𝑐 = 𝜆𝑓). Therefore, the shorter the wavelength, the higher the frequency. The energy
content of light varies with frequency (or wavelength). The relationship between energy and
frequency is described by the PlanckEinstein relation:

𝐸 = ℎ𝑓 (25.3)

where 𝐸 is the energy of a photon [J], ℎ is the Planck constant, and 𝑓 is the frequency. The
PlanckEinstein equation implies that a shorter wavelength has higher energy. For instance, a
photon of blue light (shorter wavelength) has more energy than a photon of red light (longer
wavelength).

The total radiation being emitted at all wavelengths by a blackbody is explained by the
StefanBoltzmann law, which is the area under the Planck’s law curve in Figure 25.6. The
StefanBoltzmann law shows that the total radiant energy emitted (per time interval) by a
blackbody is proportional to the fourth power of its temperature:

𝑃𝑟 = 𝜎𝑇4 (25.4)

where 𝜎 is the StefanBoltzmann constant (5.6703 ⋅ 10−8 Watt
m2K4

), and 𝑇 is the temperature
in Kelvin; 𝑃𝑟 is in [W/m2]. To conclude, Planck’s law describes the behavior of blackbody
radiation (the curves in Figure 25.6), while Wien’s law explains the shift of the peak toward
shorter wavelengths with increase in temperature, and the StefanBoltzmann law describes
the higher level of the curves as temperature increases.

https://commons.wikimedia.org/w/index.php?curid=10555337
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Figure 25.7: Three different interactions between solar light and vegetation: transmission, absorption and reflec
tion.

Figure 25.8: Sunlight incident on the Earth’s surface; 𝜃 is the zenith angle of the Sun.

25.4. Interaction of electromagnetic radiation with objects
When electromagnetic energy arrives at an object or a target, three different types of in
teraction may occur: transmission, absorption and reflection, see also Appendix G on signal
propagation. For an indepth coverage of these subjects in the context of remote sensing we
refer to [69]. From the incident light, there is a portion which is absorbed, another which is
transmitted, and a third portion that is reflected (see Figure 25.7).

Reflectance is defined as the percentage, or ratio of reflected to incident light, and varies
between zero (no light coming back from the object) and 1 (all of the incident light is reflected
to the sensor). Formally, reflectance in remote sensing is defined as

𝑅(𝜆) = 𝜋𝐿(𝜆)
𝐸(𝜆) cos𝜃 (25.5)

with 𝐸(𝜆) the solar irradiance (Sun light incident on the Earth’s surface) and 𝐿(𝜆) the backscat
tered radiance (Sunlight reflected by the Earth’s surface, eventually observed by remote sens
ing). Both 𝐸(𝜆) and 𝐿(𝜆) are functions of wavelength 𝜆. Angle 𝜃 is the zenith angle of the sun,
cf. Figure 25.8, and accounts for the orientation of the surface with respect to the incoming
sunlight (for instance, when 𝜃 = 90∘ the surface receives no solar radiation). Reflectance 𝑅(𝜆)
is a relative measure, and defined as in (25.5), it is a dimensionless quantity. Reflections can
— in limiting cases — be either specular or diffuse (scattered), cf. Figure G.10 (Appendix G.3).

The reflected photons reaching our eyes are the reason that we can see the objects.
Furthermore, the color that we perceive is, in fact, the combination of wavelengths that are
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Figure 25.9: Spectral signatures of three different surface types over the 0.4  2.5 𝜇m spectral range of electro
magnetic radiation.

not absorbed by the object and reflected back to us. The reflected fraction of the light is
the part that we are interested in, for instance while sensing vegetation from space. The
light reflected from vegetation carries information about chemical and physical vegetation
characteristics, as well as the background soil. The key to decoding this information resides
in understanding the interactions of solar light with different elements in vegetation and soil,
and their architecture and spatial arrangement.

The reflectance values of different features of the Earth’s surface and topography may be
plotted in so called ‘spectral response curves’ or ‘spectral signatures’ as a function of wave
length of the electromagnetic radiation. Differences in the spectral response of different sur
face features make it possible to classify them. That is because the spectral signatures of
similar features have similar shapes. The spectral signature is dependent on a number of
factors including coverage, composition, shape, texture etc. For instance, healthy green veg
etation has a unique spectral reflectance curve (see Figure 25.9) that allows it to be easily
distinguished from other surface types, like soil and water, in the visible and nearinfrared
region of the spectrum.

Figure 25.9 shows a sketch of spectral reflectance curves of three basic surface coverages:
green vegetation, dry bare soil and water. As shown in the figure, there are distinct differences
between the spectral curves of the surface types which help to differentiate among them. To
do so, spectral resolution has to be carefully chosen to correspond to such distinctive regions.
Spectral resolution is defined as the sensitivity of a remote sensor to respond to a specific
range of wavelengths, characterized through the number of spectral bands and their widths.
Multispectral sensors often collect data — at the same time — at several broad spectral bands
(∼ 100 nm wide; typically between 3 and 10 spectral bands), while hyperspectral sensors
provide measurements in hundreds of continuous narrow spectral bands (∼ 10 nm).

Multispectral sensors, mostly onboard the missions listed in Table 25.1, are widely used for
different applications in agriculture, forestry resources, mapping, geology, hydrology, coastal
resources and environmental monitoring. On the other hand, the high spectral resolution of
hyperspectral sensors allows for detection and quantification of surface materials and their
chemical compositions. Although hyperspectral sensors were originally developed for mining
and geology, they are now used in a wide range of applications from precision agriculture,
crop monitoring for waterstress, disease, and insect attack, to military applications. The
three major Earth remote sensing satellite missions at present, are listed in Table 25.1.
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Landsat Landsat is a joint NASA (National Aeronautics and Space Administration) and USGS
(United States Geological Survey) program. So far Landsat is by far the longest
running satellite Earthimagery program. The first satellite was launched in 1972.

MODIS MODIS, which stands for Moderate Resolution Imaging Spectroradiometer, is a
NASA program. It consists of payloads on board of two satellites, namely Terra
(EOS AM), launched in 1999, and Aqua (EOS PM), launched in 2002.

Sentinel The Copernicus program, as part of ESA’s Earth Observation missions, consists
of multiple satellite missions in the context of the Sentinel project, with the first
launch in 2014. The Sentinel missions include satellite radar and superspectral
imaging for land, ocean and atmospheric monitoring.

Table 25.1: Current major Earth remote sensing satellite missions.

25.5. Interaction of solar radiation with vegetation
The optical properties of a soilvegetation system depend on a large number of components of
vegetation and the background soil. We now give more details on the interaction of light with
vegetation characteristics and background soil. The spectral reflectance of vegetation from
0.4 to 2.5 𝜇m can be subdivided into three regions, visible (0.4  0.7 𝜇m), near infrared NIR
(0.7  1.3 𝜇m), and short wavelength, infrared (1.3  2.5 𝜇m), see also Table 21.1. Another
spectral region for vegetation characterization, known as ‘red edge’ (see Figure 25.9), is the
abrupt transition (of the green curve) between 0.69 and 0.74 𝜇m, caused by the transition
from strong chlorophyll absorption to strong nearinfrared leaf scattering.

The leaf pigments control the radiation regime of vegetation in the visible domain by
strong absorption of light, resulting in lower reflectance for healthy vegetation in this domain.
Among leaf pigments, chlorophyll (a and b) are the main absorbers of radiation in which they
can absorb up to 70%  90% of the incident solar radiation. Chlorophyll gives leaves their
green color by absorbing red (∼ 0.67 𝜇m) and blue (∼ 0.5 𝜇m) spectral wavelengths as a
result of electronic transitions in its molecular structure. Chlorophyll only influences the visible
spectrum and is transparent to infrared radiation.

The absorption in the infrared part is restricted to the dry matter compounds such as
cellulose, lignin and other structural carbohydrates. Instead, leaf tissue structure explains the
main optical properties in the near infrared part. The high reflectance of leaves in the infrared
is mainly due to the spongy mesophyll cells placed in the back or interior of a leaf. The number
of intercellular air spaces in the lower mesophyll layer is the main factor responsible for the
scattering. The red edge transition zone is important to monitor plant activity. Besides, the
position of the red edge is used for the estimation of the canopy chlorophyll content. Strong
absorption by leaf water content characterizes the middle or shortwavelength infrared region
with absorption bands centered at 1.44 𝜇m and 1.95 𝜇m. The middle infrared region is crucial
for vegetation stress identification due to drought.

The development over time or evolution, of vegetation or another phenomenon on the
Earth’s surface can be monitored and analysed by using a time series, or socalled stack of
remote sensing images.

Figure 25.10 shows the difference of (amount of) healthy green vegetation between Winter
(at left) and Summer (at right), for a rural/agricultural area. These images are based on
the above ‘red edge’ transition. The reflectance is measured in the visible redpart of the
spectrum (600700 nm), as well as in the NearInfra Red (NIR) part (800900 nm). The
socalled Normalized Difference Vegetation Index (NDVI) equals the difference of reflectance
measured in the NIRpart and the reflectance in the redpart, divided by the sum of the two;
the NDVI ranges from −1 to +1. Accordingly, the larger this index, the ‘greener’ the area.

https://landsat.gsfc.nasa.gov/
https://modis.gsfc.nasa.gov/
https://sentinel.esa.int/
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Figure 25.10: Map of Normalized Difference Vegetation Index (NDVI) in Winter 25JAN2021 (left) and Summer
14JUN2021 (right), for the area around the villages Moerdijk, Lage Zwaluwe and Zevenbergsche Hoek, near the
Hollandsch Diep river (on top, in orange). Sentinel 2 (level 1C) data (Copernicus Sentinel data 2021) was retrieved
from the Sentinel Hub [1], CC BYNC 4.0. The NDVI is based on reflectance measured in band 4 (B4) and on
reflectance measured in band 8 (B8), according to NDVI = (B8B4)/(B8+B4).

The area in Figure 25.10 is clearly more ‘green’ in Summer than in Winter.
Vegetation water content is a measure of root zone water availability. It is an impor

tant indicator of water stress for vegetation canopies. This parameter is crucial for drought
monitoring and canopy fuel moisture content. The latter, in turn, plays an important role in
predicting the occurrence and spread of wildfire. Information about vegetation water content
has also widespread utility in agriculture, forestry, and hydrology. It was already mentioned
that water absorbs radiant energy throughout the nearinfrared (0.7  1.3 𝜇m) and middle or
short wavelength infrared (1.3  2.5 𝜇m) spectral regions. A detailed analysis of the vege
tation spectral signature provides useful information on the vegetation growth stage, stress,
and chemical processes taking place in vegetation.

25.6. Example: land cover classification [*]
With reference to Figure 25.9 we demonstrate, by means of a small and simplified example,
how automated classification of multispectral remote sensing images can be done, in terms
of Earth’s surface land cover.

The images consist of 5×5 pixels. We use two spectral bands, and Figure 25.11 shows,
at left an image based on measured reflectance 𝑅 in a spectral band around 𝜆1 = 600 nm,
and similarly in the middle, an image for the band around 𝜆2 = 800 nm. In Figure 25.9 one
can see that the three different types of land cover considered here, water, dry soil and green
vegetation, clearly present a different reflectance in these two bands. In Figure 25.11 the
result of classification is shown at right, where blue refers to water, yellow to dry soil, and
green to green vegetation.

Classification in this example is based on the kNearest Neighbor (kNN) method. This
method is an example of supervised learning. This implies that a training dataset is used to
train the classifier. In this example the training dataset consists of the 3×3 pixels in the top left
of the image. The training data are labeled, meaning that the actual landcover type is known
for these pixels, for instance upon inspection onsite. Once training has been completed, the
classifier will predict the classes of other/further data, in this case, the remaining 16 pixels of
the image, leading to the land cover map shown at right, in Figure 25.11.

Classification is done on the basis of features. Features are quantities or metrics, used
by the classifier, to assign observations to individual classes. In this example we use two
features, namely the reflectance at 600 nm wavelength, 𝑅(𝜆1), and, the reflectance at 800 nm
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Figure 25.11: At left, and in the middle, remote sensing image based on measured reflectance in spectral band
around 𝜆1 = 600 nm and 𝜆2 = 800 nm respectively. At right the resulting land cover classification, with blue for
water, yellow for dry soil, and green for green vegetation.

wavelength, 𝑅(𝜆2). The core of classification is getting to know how features are mapped onto
the socalled response, i.e. the variable we would like to predict; in the present example, how
the two reflectances 𝑅(𝜆1) and 𝑅(𝜆2) are mapped onto the land cover type (water, dry soil
and green vegetation).

Figure 25.12 shows, as a graph, the features of all 25 pixels, with reflectance 𝑅(𝜆1) along
the horizontal axis, and reflectance 𝑅(𝜆2) along the vertical axis. Classification then takes
place, in this coordinate system, according to distances from the pixel tobeclassified, to the
training pixels. In this example we consider the k=3 nearest training pixels, i.e. k=3 nearest
neighbors. For each tobeclassified pixel, the distances to all training pixels are computed,
then sorted ascendingly, and the smallest k=3 distances are considered. The class which
is occuring most frequently among the k=3 nearest neighbors, then sets the class for the
pixel under consideration. The k nearest neighbors are used to predict the label of the ‘new’
observation (𝑅(𝜆1), 𝑅(𝜆2)). Note that the word distance here, refers to feature distance, not
to a (geometric) distance between pixels in the image or map.

In a geometric interpretation, kNNclassification is about a circle centered at the coordi
nates of the observed features, hence for pixel (2,5) 𝑅(𝜆1) = 0.07 and 𝑅(𝜆2) = 0.25, and
growing this circle, until k=3 training pixels are contained, and then determining the majority
of the classes of three training pixels in the circle. In this case, see Figure 25.12 at right, there
are two green pixels and one yellow pixel, hence by its two features, pixel (2,5) gets classified
as green vegetation.

kNearest Neighbor (kNN) is a very basic, very common example of supervised classifi
cation, especially suited for categorical data, as in this example, with classes like water and
green vegetation. In this section, we just demonstrate its working  we did not assess the
accuracy of prediction.

There are many more methods for automated classification, also being referred to as
pattern recognition. Classification is a true subject on its own, and a comprehensive exposition
is beyond the scope of this book.

25.7. Soil reflectance [*]
If vegetation is not very dense, solar radiation can penetrate the vegetation canopy and reach
the soil surface. In that case, part of the reflected radiation from the soil will contribute to the
observed reflectance from the top of the canopy. Therefore, it is important to study soil factors
affecting the output reflectance. The optical properties of soil are a complex function of the
soil main physical and chemical properties such as soil moisture content, surface roughness,
mineral and organic compositions. Soil mineral grains of different sizes and shapes absorb solar
radiation causing lower reflectance, mostly in the middle infrared, depending on their chemical
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Figure 25.12: k Nearest Neighbor (kNN) classification at work, with k=3, for the 16 pixels in Figure 25.11, using
the 3×3 training pixels. The training pixels are shown by means of a symbol: blue dot for water, yellow square for
dry soil and green triangle for green vegetation. The pixels which are to be classified are shown by a black circle,
together with their position in the image (row, column); for each tobeclassified pixel the k=3 nearest neighbors
determine, by majority voting, the class for the pixel.

compositions such as carbonates, sulfates and clay minerals. Organic matter influences the
chemical and physical properties of soil and mainly affects soil reflectance indirectly due to
the variation in the structure and water retention capacity of soil. The overall soil reflectance
decreases with the increase of soil organic matter over the entire spectral range from 0.4
to 2.5 𝜇m. Soil surface roughness is another important factor due to the shadowing effects
of soil aggregates. In general, the rougher the soil, the lower the reflectance is. The soil
moisture observable by optical remote sensing is approximately the moisture content within a
very thin layer at the soil surface. Soil moisture is a vital factor for many different applications
and influences the exchange of energy between soil, vegetation and the atmosphere. It has
a significant impact on the soil spectrum over the entire wavelength range. The effect of soil
moisture is stronger in the middle infrared part (also referred to as Short Wavelength IR) of
the spectrum, cf. Figure 25.9. The higher the soil moisture content, the lower the reflectance.

25.8. Exercises and worked examples
Below two questions are presented on the underlying physics of remote sensing.

Question 1 The sun is nearly a blackbody. The temperature at its surface is about 5600
degrees Celsius (5873 Kelvin). Calculate the total amount of radiation of the sun and compare
it to the radiation of the Earth (assume the Earth is a blackbody in this example, however it is
not in reality!) at a temperature of 30 degrees Celsius. Find the wavelength of the peak for
both curves in the spectral domain from 0.2 to 10 𝜇m. What are the differences between the
two peaks? Discuss the reason.

Answer 1 Using Eq. (25.4) with 𝑇 = 5873 K, we find 𝑃𝑟 = 6.746 ⋅ 107 [W/m2] for the
sun, and with 𝑇 = 303 K for the Earth 𝑃𝑟 = 4.779 ⋅ 102 [W/m2]. Using equation (25.2) we find
the peak at 𝜆𝑚𝑎𝑥 = 0.493 𝜇m for the Sun, and 𝜆𝑚𝑎𝑥 = 9.564 𝜇m for the Earth. For the solar
radiation the peak is in the visible light domain. The radiation of the Earth is infrared. The
atmosphere is — as a sidenote — strongly absorbant in these wavelengths, meaning that this
energy is kept in the Earth’s system (rather than emitted into space), causing, what is known
as the ‘greenhouse’effect. The full radiation distribution — resulting in a plot like Figure 25.6
— can be found using Eq. (25.1).
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Question 2 Leaves turn into yellow in Fall because of loss of chlorophyll. We know that
the yellow color is combination of red and green. Since leaves are green in Summer, discuss
which region of the spectrum (see Figure 25.9) is most affected by chlorophyll.

Answer 2 We see a healthy leaf as colored green, as most of its reflected radiation is in
the green wavelengths. And it absorbs other wavelengths, in particular red light. When the
leaf turns yellow, it means that now both green and red light are reflected back of the leaf, the
latter caused by the reduced amount of chlorophyll in the leaf. Or, in other words, in Summer
the leaf absorbs red and blue light (but not green), and in Fall — in addition — it no longer
absorbs red light.
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Introduction

With the advent of the Global Positioning System (GPS) technology in smartphones and other
navigational devices, almost anyone, anywhere on Earth, at any time, can determine a three
dimensional position accurately to a few meters. With some modest investments, basically
using the same GPS equipment, the Internet, and correction signals from a network of refer
ence GPS receivers, individuals and professional users alike can achieve, with relative ease,
threedimensional positions with centimeter accuracy. This feat, was until recently achievable
only for a small community of land surveyors and geodesists.

Our increased ability to collect accurate position data, and also advances in Geographic
Information Systems (GIS) and adoption of opendata policies for sharing many geographic
datasets, has resulted in huge amounts of georeferenced data becoming available to users.

However, sharing position information is not always easy: ‘How come my position mea
surement does not match yours?’, ‘You say you have centimeter accuracy, I know I have,
and yet we have a hunderd meter difference ...?’, ‘Why do our heights differ by 2.31 m (at
the DutchBelgium border)?’ These are just a few frustated outcries one will hear from users
(including civil engineering students). The reason is simple: users may have opted for dif
ferent coordinate reference systems (CRS). Positions, including heights, are relative, given
with respect to a specific reference system. There are significant differences between various
reference systems that are used, sometimes for historical reasons, sometimes because users
selected different options for good reasons. The solution is straightforward, but not simple:
knowing the name and identifier of the reference system is key. If you have position data in
the same reference system, you are lucky; if not, you have to use coordinate transformations
to convert them into the same reference system.

This part will provide you with the background and terminology that is commonly used.
For the actual transformations you can use (freely) available software.

Surveying and mapping deal with the description of the shape of the Earth, spatial relation
ships between objects near the Earth’s surface, and data associated to these. Mapping means
the (scaled) portrayal of geographic features and visualization of data in a geographic frame
work. Mapping is more than the creation of paper maps: contemporary maps are mostly
digital, allowing multiple visualizations and analysis of the data in Geographic Information
Systems (GIS). Surveying means accurately determining the terrestrial or threedimensional
position of points, and the distances and angles between them. Points describe the objects
and shapes that appear on maps and in Geographic Information Systems. These points are
usually located on the surface of the Earth. They are used to depict topographic features,
boundaries for ownership, locations of buildings, location of subsurface features (pipelines),
and are often used to monitor changes (deformation, subsidence). Points may only exist on
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Figure 26.1: The bluewhite line on the Delft University of Technology campus visualizes latitude 𝜑 = 52.0000000∘
North. The 16millimeterwide black line, in the middle of the white band, indicates the ‘exact’ position of the 52∘
latitude, in the International Terrestrial Reference System (ITRS), on 1 January 2018. Time matters because the
52∘ parallel shifts due to plate tectonics, as we cover in Chapter 34. The width of the black line represents the
shift per year. To illustrate the time effect further, six gray lines (not visible in this picture) have been painted
parallel to the blue line. These gray lines indicate significant events related to Delft. The first line is 2.79 metres
to the North, and marks the foundation of TU Delft in 1842, Delta, 27 August 2018. Photo courtesy of Conny van
Uffelen [70].

paper, or in a ComputerAided Design (CAD) system, when they represent points to be staked
out for construction work.

The process of assigning positions to geographical objects is often referred to as georef
erencing. Georeferencing also applies to maps and (aerial) photographic and remote sensing
images, whereby the internal coordinate system of the image (pixels) is related to a geographic
coordinate system and this information is typically stored with the image (either inside the im
age file or as a separate file). This is called georeferenced image data.

Geocoding and reverse geocoding are related to addresses. Geocoding is the process of
converting (street) addresses to geographic coordinates (so that they can be displayed on
a map). Reverse geocoding does the opposite: it links geographic coordinates to human
readable addresses. When no addresses are available you can use the Open Location Codes,
which are also known as plus codes. The Open Location Code (OLC) is used for identifying
an area anywhere on the world. They are derived from latitude and longitude coordinates,
are similar in length to a phone number (11 characters), and can be used anywhere on the
world to indicate an area with a resolution of 3.5 m at the equator. Nearby locations have
similar codes; therefore codes can be shortened, and/or combined with the name of a town
or municipality. For example, look up the the pluscode ‘X9XG+H6 Delft’ in Google maps.

To describe the position of points, a mathematical framework is needed. This mathematical
framework consists of a coordinate reference system (CRS). A coordinate system uses one or
more numbers, or coordinates, to uniquely determine the position of a point in a 2D or 3D
Euclidean space. In this part several of these mathematical frameworks are described, as well
as the way they are used in surveying and mapping.

This book was written close, very close, to 52.0000∘ North latitude. The 52degrees North
latitude happens to run across the campus of Delft University of Technology, just a few meters
North of the Civil Engineering and Geosciences faculty building. In 2018, the 52degrees North
line was visualized on the campus with a bluewhite line, see Figure 26.1. Check out this news
item in the university newspaper Delta [71] for a full story of how the line was created and

https://www.delta.tudelft.nl/sites/default/files/images/blauwelijnstartcitg_21augustus2018_ConnievanUffelen_0.jpg
https://www.delta.tudelft.nl/article/why-blue-line-running-across-campus


249

Figure 26.2: Monument for the lowest point in the Netherlands, in the Zuidplaspolder near Nieuwerkerk aan den
IJssel, right next to the A20 highway from Rotterdam to Gouda. The Zuidplaspolder, created in 1841, is a former
lake. The lake itself was formed as the result of peat extraction. The bottom of the monument, which carries the
inscription 6.74 m NAP, corresponds to the lowest point in a nearby meadow. In 2005 the value for the lowest
point was adjusted to 6.76 m NAP (2 cm lower).

how it has moved over the campus.

Overview of this part
In Chapters 27 and 28 two and threedimensional Cartesian coordinate systems are in

troduced. Although straightforward, 3D Cartesian coordinates are not very convenient for
describing positions on the surface of the Earth. It is actually more convenient to use curvi
linear coordinates, or, to project the curved surface of the Earth on a flat plane. Curvilinear
coordinates, known as geographic coordinates, or latitude and longitude, are discussed in
Chapter 29. The map projections, which result in easy to use 2D Cartesian coordinates, are
covered in Chapter 30.

Coordinate conversions and geodetic datum transformations are discussed in Chapter 31.
This topic can be somewhat bewildering for the inexperienced user, because there are so many
different coordinate types and geodetic datums in use, but fortunately any transformation
can be decomposed into a few elementary coordinate conversions and a geodetic datum
transformation.

Height always plays a special role in coordinate reference systems. Height is also closely
associated with the flow of water and gravity. For a low lying country like the Netherlands,
with its many polders below sea level and lowest point at 6.74 m NAP (Figure 26.2), a precise
and reliable height reference system is of vital importance. Height coordinate systems are
discussed in Chapter 33, while in Chapter 32 basic background information on the Earth’s
gravity field is given.

Finally, in Chapter 34 and 35 several important, commonly used reference systems are
described. They include the wellknown World Geodetic System (WGS84) used by GPS, the
International Terrestrial Reference System (ITRS), and the European Terrestrial Reference
System (ETRS89) in Chapter 34, and the Dutch triangulation system (‘Rijksdriehoeksstelsel’,
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RD) and the Dutch height system, the Amsterdam Ordnance Datum (‘Normaal Amsterdams
Peil’, NAP), and Lowest Astronomical Tide (LAT) chart datum at sea, in Chapter 35.

In this part vectors and matrices are systematically typeset in bold. For example a position
vector is denoted as 𝐫, and the length or norm of this vector is denoted by scalar as 𝑟 = ‖𝐫‖.
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2D Cartesian coordinate systems

To describe the position of points on a plane surface, be it a plot of land, a piece of paper,
or a computer screen, a twodimensional (2D) coordinate system need to be defined. One
of the best known 2D coordinate reference systems is the 2D Cartesian coordinate system
which uses rectangular coordinates. 2D Cartesian coordinates can also be the result of a map
projection. Map projections are discussed in Chapter 30.

27.1. 2D Cartesian coordinates
The position of a point 𝑃𝑖 on a plane surface can be described by two coordinates, 𝑥𝑖 and
𝑦𝑖, in a two dimensional (2D) Cartesian coordinate system, as illustrated in Figure 27.1(a).
The axes in the 2D Cartesian coordinate system, named after the 17th century mathematician
René Descartes, are perpendicular (orthogonal), have the same scale, and meet in what is
called the origin. The Cartesian coordinate system is righthanded, meaning, with the positive
xaxis pointing right, the positive yaxis is pointing up1. Therefore, fixing or choosing one axis,
determines the other axis. The coordinates (𝑥𝑖, 𝑦𝑖) are defined as the distance from the origin
to the perpendicular projection of the point 𝑃𝑖 onto the respective axes. The point 𝑃𝑖 can also
be represented by a position vector 𝐫𝑖 from the origin to the point 𝑃𝑖,

𝐫𝑖 = 𝑥𝑖𝐞𝑥 + 𝑦𝑖𝐞𝑦 , (27.1)

with 𝐞𝑥 and 𝐞𝑦 the unit vectors defining the axis of the Cartesian system (𝐞𝑥⊥𝐞𝑦).
For surveying and mapping the distance 𝑑12 and azimuth 𝛼12 between two points 𝑃1 and

𝑃2 are defined as,

𝑑12 = ‖𝐫2 − 𝐫1‖ = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2

𝛼12 = arctan
𝑥2 − 𝑥1
𝑦2 − 𝑦1

(27.2)

The azimuth 𝛼 is given in angular units (degrees, radians, gon) while the distance 𝑑 is ex
pressed in length units (meters), see also Appendix H. For practical computations the arctan
in Eq. (27.2) should be replaced with the atan2 (𝑥2 − 𝑥1, 𝑦2 − 𝑦1) function in order to obtain

1an easy way to remember this is the right hand rule: have the thumb of your right hand pointing up (in the
direction of the positive zaxis, cf. Chapter 28), the fingers now point from the xaxis to the yaxis
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Figure 27.1: 2D Cartesian coordinate system (a), definition of azimuth, angle and distance (b) and a 2D coordinate
transformation (c).

the right quadrant for the azimuth 𝛼122. The angle ∠𝑃2𝑃1𝑃3 between points 𝑃2, 𝑃1 and 𝑃3 is,

𝜑213 = ∠𝑃2𝑃1𝑃3 = 𝛼13 − 𝛼12 = arccos
< 𝐫2 − 𝐫1, 𝐫3 − 𝐫1 >
‖𝐫2 − 𝐫1‖‖𝐫3 − 𝐫1‖

(27.3)

with < 𝐮, 𝐯 > the dot (inner) product of two vectors. See Figure 27.1(b). The corresponding
distance ratio is defined as 𝑑12/𝑑13. Note that in surveying and mapping the azimuth, or
bearing, is defined differently than in mathematics.

In land surveying the xaxis is usually (roughly) oriented in the East direction and the yaxis
in the North direction. Therefore, the x and ycoordinates are also sometimes called Easting
and Northing. The azimuth, or bearing, is referred to the North direction. This can either be
the geographic North, magnetic North, or as is the case here, to the socalled grid North: the
direction given by the yaxis. The azimuth angle is defined as the angle of the vector 𝐫12 with
the North direction and is counted clockwise, i.e. for the azimuth a lefthanded convention is
used, see Figure 27.1(b). In mathematics the x and ycoordinate often called abscissa and
ordinate, and angles are counted counterclockwise from the xaxis, with 𝜃12 = arctan 𝑦2−𝑦1

𝑥2−𝑥1
following the mathematical textbook definition of tangent. Thus 𝛼12 = 𝜋/2 − 𝜃12 in radians,
or 𝛼12 = 90∘ − 𝜃12 when expressed in degrees.

Another possibility for describing the position of a point 𝑃𝑖 in a 2D Cartesian coordinate
system is by its polar coordinates, which are the azimuth 𝛼𝑜𝑖 and distance 𝑑𝑜𝑖 to the point
𝑃𝑖 from the origin of the coordinate system. For many types of surveying instruments and
measurements it is often convenient to make use of polar coordinates. For instance, with a
tachymeter the distance and direction measurements in the horizontal plane are polar coor
dinates3 in a 2D local coordinate system, with the origin in the instrument and yaxis in an
arbitrary, yet to be determined, direction (representing the zero reading of the instrument,
see Figure 4.26).

27.2. 2D coordinate transformations
In this section we first discuss shape preserving transformations, followed by affine and poly
nomial transformations.

2the atan2 function is the four quadrant version of the arctangent function with two input values, and output value in
the range of all four quadrants (full circle) with −𝜋 ≤ atan2 (𝑑𝑥, 𝑑𝑦) ≤ 𝜋, compared to −𝜋/2 ≤ arctan 𝑑𝑥

𝑑𝑦 ≤ 𝜋/2,
with 𝑑𝑥 = 𝑥2 − 𝑥1 and 𝑑𝑦 = 𝑦2 − 𝑦1
3in 3D, these become spherical coordinates, which is what a tachymeter measures.
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27.2.1. Shape preserving transformations
The 2D Cartesian coordinate system is defined by the origin of the axis, the direction of one of
the axis (the second axis is orthogonal to the first) and the scale (the same for both axis). This
becomes immediately clear when a second Cartesian coordinate system is considered with axis
𝑥′ and 𝑦′, see Figure 27.1(c). The coordinates (𝑥′𝑖 ,𝑦′𝑖 ) for point 𝑃𝑖 in the new coordinate system
are related to the coordinates (𝑥𝑖,𝑦𝑖) in the original system through a rotation with rotation
angle Ω, a scale change by a scale factor 𝑠 and a translation by two origin shift parameters
(𝑡𝑥′ ,𝑡𝑦′) via a socalled (2D) similarity transformation,

( 𝑥
′
𝑖
𝑦′𝑖
) = 𝑠 ( cosΩ sinΩ

− sinΩ cosΩ )( 𝑥𝑖𝑦𝑖
) + ( 𝑡𝑥′𝑡𝑦′

) . (27.4)

The translation parameters (𝑡𝑥′ ,𝑡𝑦′) give the origin of the source system in target system
coordinates. A different way of writing the same transformation is

( 𝑥
′
𝑖
𝑦′𝑖
) = 𝑠 ( cosΩ sinΩ

− sinΩ cosΩ )( 𝑥𝑖 − 𝑡𝑥𝑦𝑖 − 𝑡𝑦
) . (27.5)

with (𝑡𝑥,𝑡𝑦) the origin of the target system in source system coordinates .
The transformation preserves angles, for instance in a triangle with three points, i.e. an

gles are not changed by the transformation. This also means that shapes are preserved.
This transformation is known as the similarity transformation or 2D Helmert transformation.
Distances are not necessarily preserved in similarity transformation, unless the scale factor 𝑠
equals one, but ratios of distances are preserved.

The transformation involves four parameters: two translations 𝑡𝑥 and 𝑡𝑦, a rotation Ω,
and, a scale factor 𝑠. This means that any 2D Cartesian coordinate system is uniquely defined
by four parameters. Note that translation, rotation and scale only describe relations between
coordinate systems, so there is always one coordinate system that is used as a starting point.
Translation, rotation and scale change are relative concepts. However, a 2D Cartesian coor
dinate system can also be defined uniquely by assigning coordinates for (at least) two points.

In the special case that the scale factor 𝑠 is unity (𝑠 = 1) both angles and distances are pre
served in the transformation. This is called a congruence transformation. The transformation
involves 3 instead of 4 parameters: two translations 𝑡𝑥 and 𝑡𝑦, and a rotation Ω. In this case,
a 2D Cartesian coordinate system is defined either by (i) the three transformation parameters
with respect to another 2D coordinates system, or (ii) by assigning three coordinates for (at
least) two points.

27.2.2. Affine and polynomial transformations
Two other types of transformations, that do not preserve shape, are affine, and the more
general polynomial transformations.

An affine transformation involves a rotation, scale change separately in both x and y
direction, and a translation. It can be written as,

( 𝑥
′
𝑖
𝑦′𝑖
) = ( 𝑎 𝑏

𝑐 𝑑 )(
𝑥𝑖
𝑦𝑖
) + ( 𝑡𝑥′𝑡𝑦′

) . (27.6)

with the 2by2 transformation matrix containing 4 different elements. Affine transformations
introduce socalled shearing between the coordinate axes. Angles are not necessarily pre
served in an affine transformation, but lines remain straight, and parallel lines remain parallel
after an affine transformation. Also ratios of distances between points lying on a straight line
are preserved.
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A polynomial transformation is a nonlinear transformation which involves quadratic and
often higher order terms of the coordinates. As example, the 2D second order polynomial
transformation is

𝑥′𝑖 = 𝑡𝑥′ + 𝑎𝑥𝑖 + 𝑏𝑦𝑖 + 𝑒𝑥2𝑖 + 2𝑓𝑥𝑖𝑦𝑖 + 𝑔𝑦2𝑖 =
= 𝑡𝑥′ + (𝑎 + 𝑒𝑥𝑖 + 𝑓𝑦𝑖)𝑥𝑖 + (𝑏 + 𝑓𝑥𝑖 + 𝑔𝑦𝑖)𝑦𝑖 = 𝑡𝑥′ + �̄�(𝑥, 𝑦)𝑥𝑖 + �̄�(𝑥, 𝑦)𝑦𝑖

𝑦′𝑖 = 𝑡𝑦′ + 𝑐𝑥𝑖 + 𝑑𝑦𝑖 + ℎ𝑥2𝑖 + 2𝑘𝑥𝑖𝑦𝑖 + 𝑙𝑦2𝑖 =
= 𝑡𝑦′ + (𝑐 + ℎ𝑥𝑖 + 𝑘𝑦𝑖)𝑥 + (𝑑 + 𝑘𝑥𝑖 + 𝑙𝑦𝑖)𝑦 = 𝑡𝑦′ + �̄�(𝑥, 𝑦)𝑥𝑖 + �̄�(𝑥, 𝑦)𝑦𝑖

(27.7)

with six coefficients per coordinate. As is shown in Eq. (27.7) polynomial transformations can
be written in the form of an affine transformation, conform Eq. (27.6), but with the transfor
mation parameters �̄�, �̄�, �̄� and �̄� as functions of the coordinates themselves. This means that
straight lines, and shapes, are not necessarily preserved in polynomial transformations. Poly
nomial transformations are sometimes used as approximate transformations to match satellite
and aerial imagery onto a 2D Cartesian coordinate system, or as approximate transforma
tion for grid coordinates between two map projections, or to handle nonlinear distortions in
scanned historical maps. The 2D affine transformation of Eq. (27.6) is actually the same as a
first order polynomial transformation.

27.3. Realization of 2D coordinate systems
Assigning coordinates for two points uniquely defines a 2D Cartesian system: two points
represent four parameters (coordinates) from which the position, orientation and scale of the
axes can be constructed. The distance between two points defines the scale, from the azimuth
between two points follows the orientation of the yaxis, and the coordinates themselves define
where the origin is.

This means that a coordinate reference system, when no presurveyed points are available,
can be established and realized by selecting a number of points in the field and assigning
coordinates to them. In its simplest form you could stake out a marker, assign this marker
the coordinates (0,0), stake out a second marker and assign this the coordinates (0,1), which
defines the yaxis and length scale. But you also could have assigned different coordinates,
thereby defining a different reference frame. Instead of assigning the rather arbitrary value
of 1 for the ycoordinate of the second point, you could also have used a measured distance
between the two points involved in the definition. This implies that the scale of our freshly
defined coordinate system is determined by the scale of the measuring device (e.g. a tape or
a laser distometer) and also any measurement error that was made in this measurement is
included in the definition of scale.

All this works well for defining a local coordinate system, but what about a national system,
or that of a neighboring or previously realized project? In order to access any other system
you should include at least two (observable) points for which coordinates in the other system
are known. These could be points that have been established by other organizations, such as
a Cadaster or mapping agency which publishes the coordinates of many reference markers.
It could also be points you have established yourself using for instance GPS measurements.

27.4. Worked out examples
By means of two worked out examples we will show how a 2D coordinate system is realized
in a practical way and how this can be interpreted from a linear algebra perspective.



27.4. Worked out examples 255

Figure 27.2: Twodimensional survey network with 4 angle measurements at two known points, points 1 and 2,
and 8 distance measurements, to determine the coordinates of points 3, 4 and 5.

27.4.1. 2D coordinate system definition
In this simple example, we show how to assign coordinates to points in the terrain, in order to
establish a coordinate system. We will — in a practical way — define the position and orienta
tion of a local 2D survey network. The scale is already implied by the distance measurements
(in this example).

Figure 27.2 shows a simple survey network, with 5 points. Between these points, angle
and distance measurements have been taken. When the coordinates of points 1 and 2 are
given (e.g. as a result of an earlier survey), then these angle and distance measurements can
be used (and are sufficient) to determine the coordinates of points 3, 4 and 5, for instance
through leastsquares parameter estimation.

What now, if no coordinates are available apriori? Then you have to choose some co
ordinates yourself, in order to establish a socalled local network. But, you have to make a
considerate choice  you cannot just assign coordinate values to some random points. For
instance, if we would assign coordinates to points 1, 2 and 3 (in an arbitrary way), we may
cause deformations and distortions of the network — i.e. the coordinates of those points may
then not match (at all) the actually observed angles and distances!

The considerate choice requires you to analyse the geometry of the network. As stated in
Section 27.3, a 2D Cartesian coordinate system is uniquely defined by four parameters: the
scale 𝑠, orientation Ω, and translations 𝑡𝑥 and 𝑡𝑦. The scale is set, in this case, by the distance
measurements. What remains to be fixed are the origin and the orientation.

A geometric network, or construction, with angles and distances, like the one in Figure 27.2
provides shape and scale, but not (absolute) position, nor orientation. You can shift the
network (in two directions), while the angles and distances between the points stay exactly
the same, and also, you can rotate the network, without altering angles and distances. There
are still three degrees of freedom. Distances and angles are invariant against translation and
rotation. Or, to turn this around, angle and distance measurements lack information about
translation and rotation! Hence, you have to supply this!

In this example one could fix the coordinates of point 2, for instance, simply setting it to
be the origin (𝑥2, 𝑦2) = (0, 0) (this fixes two degrees of freedom). And, one could set point
5 to be exactly along the positive xaxis, hence setting its ycoordinate to zero (this fixes the
last degree of freedom). The coordinates of point 5 then become (𝑥5, 𝑦5) = (𝑙25, 0), where
the measured distance 𝑙25 is used for the xcoordinate. The distance and angle measure
ments pose a geometric defect with three degrees of freedom in a 2Dnetwork. Hence, three
coordinates shall be fixed (no more, no less).
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Figure 27.3: Twodimensional simple survey network with 4 angle measurements and 6 distance measurements.

27.4.2. Algebraic analysis
The previous example provides a practical ‘recipe’ how to establish a 2D coordinate system.
In the following we present, by means of the same example, an algebraic analysis of this
geometric defect.

The network is shown in Figure 27.3. This artificial network, being just a square, allows for
a convenient and simple algebraic analysis. There are four angle measurements 𝛼314, 𝛼312,
𝛼123 and 𝛼124. There are six distance measurements 𝑙12, 𝑙13, 𝑙14, 𝑙23, 𝑙24 and 𝑙34. Forgetting
about measurement errors, one can link these measurements to the (unknown) coordinates,
by the following system of equations

𝐲 = 𝐀𝐱 (27.8)

where the observations are in vector 𝐲 on the left, the unknown parameters (the coordinates)
in vector 𝐱 on the right, and matrix 𝐀 relating the two. Often the relation is nonlinear, which
is consequently approximated with a linearized relation, where we work with increments of
observations and parameters (indicated by the Δsymbol). Further details can be found in
Chapters 8 and 9. For the artificial geometry in Figure 27.3, this system of equations becomes:
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(27.9)

There are𝑚 = 4+6 = 10 observations, hence 𝐲 is a 10x1vector, and there are 𝑛 = 8 unknown
parameters in vector 𝐱. Consequently, matrix 𝐀 has dimensions 10x8. The rank of matrix 𝐀
is however only 5, not 8. This is the algebraic indication that the measurements leave three
degrees of freedom. The nullspace of matrix 𝐀 is not empty. Instead, in this example, the
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Figure 27.4: Interpretation of the nullspace of matrix 𝐀, vector 𝐯1 at left, vector 𝐯2 in the middle, and vector 𝐯3
at right.

nullspace of matrix 𝐀 can be spanned by the following three (linearly independent) vectors:
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(27.10)

These three vectors can be stored together, in 8x3 matrix 𝐕, with 𝐕 = (𝐯1, 𝐯2, 𝐯3), for which
holds 𝐀𝐕 = 𝟎. The columns of matrix 𝐕 provide a basis for the nullspace of matrix 𝐀.

Now suppose that 𝐱 is a solution to Eq. (27.8), then 𝐱′ = 𝐱 + 𝐕𝜷, with 3x1vector 𝜷 =
(𝛽1, 𝛽2, 𝛽3)𝑇, is also a solution, namely

𝐲 = 𝐀𝐱′ = 𝐀𝐱 + 𝐀𝐕𝜷 = 𝐀𝐱 (27.11)

Or, changing the coordinates of the points, in some particular way as imposed by matrix 𝐕,
does not change the observations. Or, the other way around, based on a set of observations,
you cannot tell the difference between 𝐱 and 𝐱′. The nullspace of matrix 𝐀 being not empty,
causes that there is left a certain degree of freedom in the solution.

The vectors 𝐯1, 𝐯2 and 𝐯3 can be easily interpreted in this example, see Figure 27.4. Vector
𝐯1 implies an offset to the xcoordinates of all points in the network, meaning that translation
parameter 𝑡𝑥 is undefined. Vector 𝐯2 implies an offset to the ycoordinates of all points,
meaning that 𝑡𝑦 is undefined. And eventually, vector 𝐯3 implies a rotation Ω of the network
about point 1.

Applying the earlier practical ‘recipe’ would cause us to fix the coordinates of point 1 to
the origin (𝑥1, 𝑦1) = (0, 0), and to set the ycoordinate of point 2 to zero, i.e. (𝑥2, 𝑦2) = ( . , 0).
Three coordinates have been fixed, and consequently they can be removed from vector 𝐱.
Correspondingly, the first, second, and fourth column of matrix 𝐀 has to be removed as well.

The interested reader is encouraged to verify that the resulting/reduced matrix 𝐀, with
dimensions 10x5, has full rank, equal to 5, and an empty nullspace. This means that, based
on the available measurements, the remaining 5 parameters (coordinates) can be determined,
smoothly, for instance through leastsquares estimation. The origin, the scale and the orien
tation of the 2D Cartesian coordinate system have been fixed.

27.5. Exercises and worked examples
This section presents a worked example on the use of the 2D similarity transformation.
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Figure 27.5: Setup for measuring points A and B of the facade of a building (Question 1).

Question 1 Two surveyors measure the facade of a building: points A and B. They both use
Euclidean geometry in the local horizontal plane, but they adopt a different coordinate system,
see Figure 27.5. The coordinates of point A and B in the blue system read (𝑥𝐴, 𝑦𝐴) = (2, 1) and
(𝑥𝐵 , 𝑦𝐵) = (5, 1), and in the red system (𝑥′𝐴, 𝑦′𝐴) = (4√2,−√2) and (𝑥′𝐵 , 𝑦′𝐵) = (7√2,−4√2). The
coordinates in the two systems are related through a 2D similarity transformation. Determine,
based on the coordinates given for the two points, the transformation parameters, i.e. scale
factor 𝑠, rotation angle Ω, and translations 𝑡𝑥′ , 𝑡𝑦′ .

Answer 1 A clever approach to solving this problem is using Eq. (27.4) on coordinate
differences

( 𝑥
′
𝐵 − 𝑥′𝐴
𝑦′𝐵 − 𝑦′𝐵

) = 𝑠 ( cosΩ sinΩ
− sinΩ cosΩ )( 𝑥𝐵 − 𝑥𝐴𝑦𝐵 − 𝑦𝐴

)

as the translation parameters cancel. Setting 𝑠 cosΩ = 𝑝 and 𝑠 sinΩ = 𝑞, we obtain

( 3√2
−3√2 ) = (

𝑝 𝑞
−𝑞 𝑝 )(

3
0 )

from which we can easily solve 𝑝 and 𝑞. Doing so we find 𝑝 = √2 and 𝑞 = √2. From this we
can reconstruct that 𝑠 = √𝑝2 + 𝑞2 and Ω = arctan 𝑞

𝑝 , which gives 𝑠 = 2 and Ω =
𝜋
4 . Then

using again Eq. (27.4), but now for just one of the points, e.g. A, we have

( 4√2
−√2 ) = 2(

1
2√2

1
2√2

−12√2
1
2√2

)( 21 ) + (
𝑡𝑥′
𝑡𝑦′

)

from which we can solve the translation parameters as (𝑡𝑥′ , 𝑡𝑦′) = (√2, 0).
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3D Cartesian coordinate systems

Threedimensional (3D) coordinates systems are used to describe the position of objects in
3Dspace. In this chapter we discuss 3D Cartesian coordinate systems, before discussing
spherical and ellipsoidal coordinate systems in Chapter 29. 3D Cartesian coordinate systems
can be considered a straightforward extension of 2D Cartesian coordinate systems by adding
a third axis.

28.1. Introduction
The position of an object in 3D space can be described in several ways. One of the most
straightforward ways is to give the position by three coordinates 𝑋, 𝑌, 𝑍 in a Cartesian co
ordinate system. See also Figure 28.1(a). The coordinates are defined with respect to a
reference point, or origin, with coordinates (0,0,0), which can be selected arbitrarily. For a
global geocentric terrestrial coordinate system it is however convenient to choose the origin
at the center of the Earth. Further, the direction of one of the axis is chosen to coincide with
the Earth rotation axis, while the other axis is based on a conventional definition of the zero
meridian. The third axis completes the pair to make an orthogonal set of axes. The scale along
the axes is simply tied to the SI definition of the meter (Appendix H). Capital letters 𝑋, 𝑌, 𝑍
are used for the coordinates to set them apart from the 2D coordinate system in Chapter 27,
but also because this is the usual notation for coordinates in a 3D global terrestrial coordinate
system with the origin at the center of the Earth.

Instead of a global geocentric terrestrial system also a local 3D Cartesian coordinate system
can be defined, with the Yaxis pointing in the North direction, the Zaxis in the up direction,
and the Xaxis completing the pair and therefore pointing in the East direction, and with the
origin somewhere on the surface of the Earth. This type of system is referred to as topocentric
coordinate system and covered in Section 29.4. For the coordinates it is common to use the
capital letters 𝐸, 𝑁, 𝑈 (East, North, Up) instead of 𝑋, 𝑌, 𝑍.

In both examples, with geocentric and topocentric coordinates, the coordinate system is
somehow tied to the Earth, but this is not necessary. In another commonly used variant the
coordinate system is tied to an instrument or sensor. Sometimes the third axis may be aligned
to the direction of the gravity vector, as is typical for a theodolite or total station, but the third
axis may also be tied to the observing platform (boat, car, plane) and have a more or less
arbitrary orientation with respect to the Earth gravity field.

259
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Figure 28.1: 3D Cartesian coordinate system (a) and definition of azimuth 𝛼12, horizontal angle 𝛼213, vertical
angle 𝜁12, angle 𝜑213 and distance 𝑑12 (b).

28.2. 3D Cartesian coordinates
The 3D topocentric Cartesian coordinate system can be considered a straightforward extension
of a 2D Cartesian coordinate system. Just imagine in Figure 27.1 a zaxis from the origin
pointing outside the paper towards you. Coordinates, position vectors, distances, and angles
are defined in a similar fashion. The 3D position vector for a point 𝑃𝑖 with coordinates (𝑋𝑖,𝑌𝑖,𝑍𝑖)
given by

𝐫𝑖 = 𝑋𝑖𝐞𝑋 + 𝑌𝑖𝐞𝑌 + 𝑍𝑖𝐞𝑍 , (28.1)

with 𝐞𝑋, 𝐞𝑌 and 𝐞𝑍 the unit vectors defining the axis of the Cartesian system. This is illustrated
in Figure 28.1(a). As shown in Figure 28.1(b), the distance 𝑑12 between two points 𝑃1 and 𝑃2
is

𝑑12 = ‖𝐫2 − 𝐫1‖ = √(𝑋2 − 𝑋1)2 + (𝑌2 − 𝑌1)2 + (𝑍2 − 𝑍1)2 , (28.2)

and angle ∠𝑃2𝑃1𝑃3 between points 𝑃2, 𝑃1 and 𝑃3 is,

𝜑213 = ∠𝑃2𝑃1𝑃3 = arccos
< 𝐫2 − 𝐫1, 𝐫3 − 𝐫1 >
‖𝐫2 − 𝐫1‖ ‖𝐫3 − 𝐫1‖

(28.3)

with < 𝐮, 𝐯 > the dot (inner) product of two vectors. For a topocentric system, with the Zaxis
in the up direction and Yaxis to the North, the azimuth 𝛼12 and vertical angle 𝜁12 between
points 𝑃1 and 𝑃2 can be defined as,

𝛼12 = arctan
𝑋2 − 𝑋1
𝑌2 − 𝑌1

𝜁12 = arctan
√(𝑋2 − 𝑋1)2 + (𝑌2 − 𝑌1)2

𝑍2 − 𝑍1
= arccos

𝑍2 − 𝑍1
√(𝑋2 − 𝑋1)2 + (𝑌2 − 𝑌1)2 + (𝑍2 − 𝑍1)2

(28.4)

See also Figure 28.1(b). For practical computations the arctan in Eq. (28.4) should be replaced
with the atan2 (𝑋2 − 𝑋1, 𝑌2 − 𝑌1) function in order to obtain the right quadrant for the azimuth
𝛼12. Note that this definition only makes sense for topocentric systems where the Zaxis is
oriented in the up direction and Yaxis to the North. Eq. (28.4) cannot be used for global
geocentric terrestrial coordinate systems. The angle 𝜑213 of Eq. (28.3) is not the same as the
horizontal angle 𝛼213 in Figure 28.1(b). The horizontal angle is defined as 𝛼213 = 𝛼13 − 𝛼12.
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28.3. 3D similarity transformations
We start this section with a brief overview of 3D coordinate transformations. Of the 3D trans
formations, the 3D similarity transformation, that preserves shape, is by far the most often
used coordinate transformation for 3D coordinates, and the remainder of this section is de
voted to this important type of transformation.

28.3.1. Overview 3D coordinate transformations
The affine transformation is the most general transformation which can be represented in
terms of linear algebra. The 3by3 matrix 𝐑 has nine different elements, implying rotation,
scaling and socalled shearing, the latter meaning that a square is turned into a parallelogram
(or, actually a cube into a parallelepiped).

(
𝑋′
𝑌′
𝑍′
) = (

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

)
⏝⎵⎵⎵⏟⎵⎵⎵⏝

𝐑

(
𝑋
𝑌
𝑍
) + (

𝑡𝑥′
𝑡𝑦′
𝑡𝑧′

) (28.5)

The 3D affine transformation is specified by a total of 12 parameters, consisting of 9 param
eters for matrix 𝐑 plus 3 translation parameters (𝑡𝑥′ , 𝑡𝑦′ , 𝑡𝑧′).

The similarity transformation preserves the shape of objects. The 3by3 matrix 𝐑 now
implies only a rotation (or actually series of rotations). Matrix 𝐑 has 9 elements, but needs to
satisfy 3 orthogonality conditions and 3 orthonormality conditions (the rows are orthogonal,
and they are all of unit length), and thereby only 3 degrees of freedom remain (3 rotation
angles).

(
𝑋′
𝑌′
𝑍′
) = 𝜆𝐑(Ω𝑥 , Ω𝑦 , Ω𝑧) (

𝑋
𝑌
𝑍
) + (

𝑡𝑥′
𝑡𝑦′
𝑡𝑧′

) (28.6)

The 3D similarity transformation is specified by a total of 7 parameters, three rotation param
eters (Ω𝑥 , Ω𝑦 , Ω𝑧), a scale factor (𝜆 )and three translation parameters (𝑡𝑥′ , 𝑡𝑦′ , 𝑡𝑧′).

The congruence transformation preserves the shape and size of objects. It is the socalled
‘rigid body’ transformation. It is a special case of the similarity transformation, with the scale
parameter fixed to one 𝜆 = 1

(
𝑋′
𝑌′
𝑍′
) = 𝐑(Ω𝑥 , Ω𝑦 , Ω𝑧) (

𝑋
𝑌
𝑍
) + (

𝑡𝑥′
𝑡𝑦′
𝑡𝑧′

) (28.7)

The 3D congruence transformation is specified by a total of 6 parameters (3 for rotation, and
3 for translation).

Of the three transformations, the 3D similarity transformation is by far the most often used
3D coordinate transformation. It will be covered in more detail in the next subsections.

28.3.2. 7parameter similarity transformation
To transform 3D Cartesian coordinates from a source to target coordinate system a 7parameter
similarity transformation is used. The transformation consists of three translations (𝑡𝑥′ , 𝑡𝑦′ , 𝑡𝑧′),
three rotations (Ω𝑥 , Ω𝑦 , Ω𝑧) and a scale factor 𝜆,

(
𝑋′
𝑌′
𝑍′
) = 𝜆 ⋅ 𝐑(Ω𝑥 , Ω𝑦 , Ω𝑧) ⋅ (

𝑋
𝑌
𝑍
) + (

𝑡𝑥′
𝑡𝑦′
𝑡𝑧′

) (28.8)
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Figure 28.2: Definition of rotation angles for the 7parameter similarity transformation. The figure on the left
shows a rotation Ω𝑧 about the Zaxis, the middle figure a rotation Ω𝑦 about the newly obtained Y’axis, and the
figure on the right a rotation Ω𝑥 about the final X”axis. The angles are positive for a counterclockwise rotation
when viewed along the axis towards the origin (righthanded rotation is positive) and defined to turn the source
coordinate system axes into the target system axes.

with (𝑋, 𝑌, 𝑍) the coordinates in the source coordinate system and (𝑋′, 𝑌′, 𝑍′) the coordinates
in the target coordinate system. The translation vector (𝑡𝑥′ , 𝑡𝑦′ , 𝑡𝑧′) has to be added to the
source coordinates after rotation. The translation vector (𝑡𝑥′ , 𝑡𝑦′ , 𝑡𝑧′) gives the coordinates of
the origin of the source coordinate system with respect to the target coordinate system. The
7parameter similarity transformation can also be written as,

(
𝑋′
𝑌′
𝑍′
) = 𝜆 ⋅ 𝐑(Ω𝑥 , Ω𝑦 , Ω𝑧) ⋅ (

𝑋 − 𝑡𝑥
𝑌 − 𝑡𝑦
𝑍 − 𝑡𝑧

) (28.9)

whereby the translation vector (𝑡𝑥 , 𝑡𝑦 , 𝑡𝑧) represents the coordinates of the origin of the target
coordinate system with respect to the source coordinate system. The relation between the
two translation vectors is,

(
𝑡𝑥′
𝑡𝑦′
𝑡𝑧′

) = −𝜆 ⋅ 𝐑(Ω𝑥 , Ω𝑦 , Ω𝑧) ⋅ (
𝑡𝑥
𝑡𝑦
𝑡𝑧
) (28.10)

The rotation matrix 𝐑(Ω𝑥 , Ω𝑦 , Ω𝑧) is defined as a sequence of socalled Euler rotations. The
order in which the rotations are applied, and over which axis, matters. For instance, a 321
series of Euler rotations gives the rotation matrix

𝐑321(Ω𝑥 , Ω𝑦 , Ω𝑧) = 𝐑1(Ω𝑥) ⋅ 𝐑2(Ω𝑦) ⋅ 𝐑3(Ω𝑧) =

⎛
⎜

⎝

cosΩ𝑧 cosΩ𝑦 sinΩ𝑧 cosΩ𝑦 − sinΩ𝑦
cosΩ𝑧 sinΩ𝑦 sinΩ𝑥 − sinΩ𝑧 cosΩ𝑥 sinΩ𝑧 sinΩ𝑦 sinΩ𝑥 + cosΩ𝑧 cosΩ𝑥 cosΩ𝑦 sinΩ𝑥
cosΩ𝑧 sinΩ𝑦 cosΩ𝑥 + sinΩ𝑧 sinΩ𝑥 sinΩ𝑧 sinΩ𝑦 cosΩ𝑥 − cosΩ𝑧 sinΩ𝑥 cosΩ𝑦 cosΩ𝑥

⎞
⎟

⎠

(28.11)

with Ω𝑧, Ω𝑦 and Ω𝑥 the rotation angles around — and in that order — the z, y and xaxis
respectively. The corresponding Euler rotation matrices, 𝐑𝑖(Ω𝑖), describing rotations around
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the coordinate axis, are

𝐑3(Ω𝑧) = (
cosΩ𝑧 sinΩ𝑧 0
− sinΩ𝑧 cosΩ𝑧 0

0 0 1
) , 𝐑2(Ω𝑦) = (

cosΩ𝑦 0 − sinΩ𝑦
0 1 0

sinΩ𝑦 0 cosΩ𝑦
) ,

𝐑1(Ω𝑥) = (
1 0 0
0 cosΩ𝑥 sinΩ𝑥
0 − sinΩ𝑥 cosΩ𝑥

)

(28.12)

whereby the righthanded rotation is positive, which is, when viewed along the axis towards
the origin, a counterclockwise rotation. See Figure 28.2. This sense of rotation is the same
as was used in the 2dimensional case, see Eq. (27.4). Imagine in Figure 27.1(c) a zaxis
pointing out of the paper, then the rotation matrix of Eq. (27.4) is essentially 𝐑3(Ω𝑧) (which
does not change the zaxis or zcoordinates) and the rotation angle Ω of Eq. (27.4) is actually
Ω𝑧 in the 3Dtransformation. The rotation Ω𝑧 around the zaxis is actually a rotation of the
xaxis (and also yaxis) by Ω𝑧. The complete rotation 𝐑321(Ω𝑥 , Ω𝑦 , Ω𝑧) is thus the product of
first a rotation around the zaxis, followed by a rotation around the new yaxis, and finally a
rotation around the then current xaxis.

Changing the order of the Euler rotations in Eq. (28.11) will result in a different equation for
the rotation matrix with different rotation angles. This is typical for Euler rotations. Reverting
the order of rotations in Eq. (28.11), gives a 123 sequence of Euler rotations with rotation
matrix,

𝐑123(Ω′𝑥 , Ω′𝑦 , Ω′𝑧) = 𝐑3(Ω′𝑧) ⋅ 𝐑2(Ω′𝑦) ⋅ 𝐑1(Ω′𝑥) =

⎛
⎜

⎝

cosΩ′𝑧 cosΩ′𝑦 cosΩ′𝑧 sinΩ′𝑦 sinΩ′𝑥 + sinΩ′𝑧 cosΩ′𝑥 − cosΩ′𝑧 sinΩ′𝑦 cosΩ′𝑥 + sinΩ′𝑧 sinΩ′𝑥
− sinΩ′𝑧 cosΩ′𝑦 − sinΩ′𝑧 sinΩ′𝑦 sinΩ′𝑥 + cosΩ′𝑧 cosΩ′𝑥 sinΩ′𝑧 sinΩ′𝑦 cosΩ′𝑥 + cosΩ′𝑧 sinΩ′𝑥

sinΩ′𝑦 − cosΩ′𝑦 sinΩ′𝑥 cosΩ′𝑦 cosΩ′𝑥

⎞
⎟

⎠

(28.13)

with Ω′𝑥, Ω′𝑦 and Ω′𝑧 the rotation angles around — and in that order — the x, y and xaxis
respectively. The rotation matrix 𝐑123(Ω𝑥 , Ω𝑦 , Ω𝑧) is thus the product of first a rotation around
the xaxis, followed by a rotation around the new yaxis, and finally a rotation around the then
current zaxis. The rotation angles Ω′𝑥, Ω′𝑦 and Ω′𝑧 are different from the rotation angles Ω𝑥,
Ω𝑦 and Ω𝑧 used in Eq. (28.11).

The rotation cannot be inverted by just changing the sign of the parameters (except for very
small angles). The inverse of the rotation matrix is 𝐑321(Ω𝑥 , Ω𝑦 , Ω𝑧)−1 = (𝐑1(Ω𝑥) ⋅ 𝐑2(Ω𝑦) ⋅
𝐑3(Ω𝑧))−1 = 𝐑3(−Ω𝑧) ⋅ 𝐑2(−Ω𝑦) ⋅ 𝐑1(−Ω𝑥) = 𝐑123(−Ω𝑥 , −Ω𝑦 , −Ω𝑧). This is not the same
as changing the sign of the angles in Eq. (28.11), it also means changing the order of the
rotations.

As the rotation matrices are orthogonal matrices, the inverse of the rotation matrix is equal
to the transpose of the matrix. Thus we can write 𝐑321(Ω𝑥 , Ω𝑦 , Ω𝑧)𝑇 = 𝐑123(−Ω𝑥 , −Ω𝑦 , −Ω𝑧).
Compare the terms in Eqs. (28.11) and (28.13), and you will see it is true. It means that to
do the reverse rotation, we not only have to change the sign of the rotation angles, but also
need to revert the order of the rotations.

Therefore Eqs. (28.11) and (28.13) are often used as forward and inverse transform pairs
(or vice versa), whereby only the sign of the rotation angles changes. However, you can also
use the same formula for the inverse rotation, but then the values of the rotation angles for
the forward and inverse transformation differ by more than only the sign.
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Figure 28.3: Definition of infinitesimal small rotation angles Ω𝑥, Ω𝑦 and Ω𝑧 for the Helmert transformation.

28.3.3. 7parameter Helmert (small angle) transformation [*]
In case the rotation angles are very small, with cosΩ ≃ 1 and sinΩ ≃ Ω (with Ω in radians),
the rotation matrix 𝐑(Ω𝑥 , Ω𝑦 , Ω𝑧) is

𝐑(Ω𝑥 , Ω𝑦 , Ω𝑧) ≃ (
1 Ω𝑧 −Ω𝑦
−Ω𝑧 1 Ω𝑥
Ω𝑦 −Ω𝑥 1

) (28.14)

with the rotation angles as defined in Figure 28.3. The 7parameter similarity transformation
of Eq. (28.8) in its simplified form (whereby products 𝜇Ω𝑖 can be safely neglected), is

(
𝑋′
𝑌′
𝑍′
) = (

𝑋
𝑌
𝑍
) + (

𝑡𝑥′
𝑡𝑦′
𝑡𝑧′

) + (
𝜇 Ω𝑧 −Ω𝑦
−Ω𝑧 𝜇 Ω𝑥
Ω𝑦 −Ω𝑥 𝜇

) ⋅ (
𝑋
𝑌
𝑍
) (28.15)

with 𝜇 = 𝜆 − 1 the differential scale factor. When the scale factor 𝜆 is close to one, which
is often the case, the differential scale factor 𝜇 will be a small number and is sometimes
expressed in partspermillion (ppm), with 1 ppm = 10−6.

This transformation is also known as the 7parameter Helmert transformation (the 3
parameter Helmert transformation only includes the translation). This transformation is re
versible: changing the sign of the seven transformation parameters results in the inverse
transformation.

The reader should be aware that often different conventions are used for the sign of the
rotation parameters. The convention that is used in this book is that a positive rotation is a
counterclockwise rotation when viewed in the direction of the origin, and this convention is
applied to a rotation of the axis of the coordinate system. Other conventions define transfor
mations not based on rotation of the axes, but are based on rotations of the position vector,
resulting in an opposite sign for the rotation angles or other signs for the small angle terms
in the rotation matrices. It is always a good idea to check that the transformation formulas
provided together with published transformation parameters use the same signconvention as
the software you are using.

28.3.4. 10–parameter Molodensky–Badekas transformation [*]
The 7parameter similarity transformation uses rotations about the origin of the source system.
This may result in numerical problems for networks of points that are confined to small regions
on the Earth surface, such as coordinates of a national reference system. In this case there will
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be a high correlation between the translations and rotations in the derivation of the parameter
values for the standard 7parameter transformation. Therefore, instead of rotations being
derived around the origin of the system which is near the geocenter, rotations are derived
around a point somewhere within the domain of the network (e.g. in the middle of the area of
interest on the Earth’s surface). For this type of transformation three additional parameters,
the coordinates of the rotation point, are required to describe the transformation. These
additional parameters can be chosen freely, or by convention, and do not have the same
role in the derivation of parameter values for the other 7parameters. The transformation
essentially remains a 7parameter transformation, with 7 degrees of freedom, although an
extra 3 parameters are needed in the specification. The transformation formula is

(
𝑋′
𝑌′
𝑍′
) = (1 + 𝜇) ⋅ 𝐑(Ω′𝑥 , Ω′𝑦 , Ω′𝑧) ⋅ (

𝑋 − 𝑋0
𝑌 − 𝑌0
𝑍 − 𝑍0

) + (
𝑡′𝑥
𝑡′𝑦
𝑡′𝑧
) + (

𝑋0
𝑌0
𝑍0

) (28.16)

with (𝑋0, 𝑌0, 𝑍0) the coordinates of the selected rotation point. This transformation is not
reversible in the sense that the same parameter values, with different signs, can be used for
the reverse transformation. This is because the coordinates for the rotation point are changed
by the transformation. However, in practice sometimes the same coordinates are used, but this
results in cumulative errors after repeated transformations. Eq. (28.16) uses the same sign
convention as Eq. (28.8). Note that, whereas many publications use for Eq. (28.8) the same
sign convention as this book, most publications use for Eq. (28.16) the opposite convention.
You are warned!

28.4. Realization of 3D coordinate systems
The 3D Cartesian coordinate system is defined by the origin of the axes, the direction of
two axes (the third axis is orthogonal to the other two) and the scale, which is the same
for all axes. This becomes immediately clear when a second Cartesian coordinate system is
considered with axes 𝑋′, 𝑌′ and 𝑍′. The coordinates (𝑋′𝑖,𝑌′𝑖 ,𝑍′𝑖) for point 𝑃𝑖 in the new coordinate
system are related to the coordinates (𝑋𝑖,𝑌𝑖,𝑍𝑖) in the original system through a 7parameter
similarity transformation, consisting of three rotations, three translations and a scale factor,
see Section 28.3. This transformation preserves angles and distance ratios, i.e. shapes are
not changed by the transformation. In the transformation 7 parameters are involved. This
means that any 3D Cartesian coordinate system is uniquely defined by 7 parameters. Note
that again translation, rotation and scale only describe relations between coordinate systems,
which means that there is always one coordinate system that is used as a starting point.

However, a 3D Cartesian coordinate system can also be uniquely defined by assigning
coordinates for (at least) three points, using a similar approach as we did in Section 27.3.
Assigning coordinates for two points uniquely defines six degrees of freedom, which leaves
one degree of freedom (a rotation) which needs to be resolved by one coordinate of a third
point (although one coordinate is sufficient for the definition, approximate values for the other
two coordinates are needed for numerical reasons). This means that a 3D coordinate system
can be realized by selecting at least 3 points and assigning at least 7 coordinates to them.

Using 7 coordinates for 3 points is just enough to define a 3D coordinate system. When
using more than 7 coordinates and 3 points to define the coordinates there is a serious risk of
introducing distortions in the coordinates. For example, suppose we have 3 points, each with
3 coordinates. Suppose we use the coordinates of the first two points and the Zcoordinate
of the third point to define the coordinate system, then in general the X and Y coordinates
of the third point will not match the given coordinates, unless by coincidence. The same is
true if four or more points are ‘given’. The only proper way to handle such a situation is to
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set up a system of equations with a 3Dsimilarity transformation, with 7 parameters, and then
minimize in a leastsquares sense the differences between the given and computed coordi
nates. In more technical terms this is known as an Stransformation. In this way, using more
than 7 coordinates for 3 points, has the important advantage of added redundancy in practical
computations and becoming less sensitive to outliers, especially in combination with statistical
testing, without introducing distortions in the network. This is called a freenetwork. The un
derlying mathematical theory on Ssystem and Stransformation (in Dutch: schrankingsstelsel
en schrankingstransformatie) are due to Delft University of Technology professor W. Baarda
(19172005), see Figure 5.1.

It is also possible to do an overdetermined connection to given coordinates. In this case
the resulting coordinates for the connection points will be the same as the apriori given values,
but the coordinates of the other points in the network will change as well. This can also be
done in a weighted sense, whereby weights or a variance matrix is assigned to the given
coordinates, and the network of coordinates is fitted in a least–squares sense to the given
coordinates. This results in an overdetermined network of coordinates.

28.5. Exercises and worked examples
Below follows a simple exercise on setting up a threedimensional rotation matrix.

Question 1 Coordinate system I is related to coordinate system II through a rotation
(counterclockwise) about the Zaxis over 90 degrees. Both systems are threedimensional
Cartesian coordinate systems. Compute the rotation matrix for transforming coordinates given
with respect to system I, into coordinates with respect to system II.

Answer 1 The 3x3 rotation matrix is given by Eq. (28.12). The angle Ω𝑧 = 90 degrees.
Hence, the matrix becomes

(
0 1 0
−1 0 0
0 0 1

) .

So, a point on the Yaxis in source system I (e.g. with coordinates (0, 1, 0)), becomes a point
on the Xaxis in target system II (e.g. with coordinates (1, 0, 0)).



29
Spherical and ellipsoidal coordinate

systems

Although straightforward, Cartesian coordinates are not very convenient for representing po
sitions on the surface of the Earth. Take a global terrestrial coordinate system, with the origin
at the center of mass of the Earth, the Zaxis is coinciding with the Earth’s rotation axis, the
Xaxis is based on a conventional definition of the zero meridian and the Yaxis completing the
pair to make an orthogonal set of axis, and the scale tied to the SI definition of the meter.
Considering that the Earth radius is about 6400 km, then to represent positions on the surface
of the Earth in meters 7 digits (before the decimal point) would be needed for each of the
three coordinates. For representing positions on the surface of the Earth it is actually more
convenient to use curvilinear coordinates defined on a sphere or ellipsoid approximating the
Earth’s surface.

29.1. Geocentric coordinates (spherical coordinates)
For example, assuming a sphere with radius 𝑅 approximating the Earth surface, spherical
coordinates 𝜓, 𝜆 and 𝑟 (with 𝑟 = 𝑅 + ℎ′, and 𝑅 = 6371 km the mean radius of the Earth) can
be defined, see Figure 29.1. The relationship between Cartesian and spherical coordinates is
given by,

𝑋 = 𝑟 cos𝜓 cos 𝜆
𝑌 = 𝑟 cos𝜓 sin 𝜆
𝑍 = 𝑟 sin𝜓

(29.1)

The inverse relationship is given by,

𝜓 = arctan( 𝑍
√𝑋2 + 𝑌2)

)

𝜆 = arctan(𝑌𝑋)

𝑟 = √𝑋2 + 𝑌2 + 𝑍2)

(29.2)

The spherical coordinates 𝜓 and 𝜆 can be used to represent positions on the sphere. In this
case the sphere is a coordinate surface (surface on which one of the coordinates is constant),
with 𝜓 the geocentric latitude and 𝜆 the longitude of the point. In Eqs. (29.1) and (29.2) we
abstained from using the expression 𝑅 +ℎ′, with 𝑅 the radius of the sphere and ℎ′ the height

267



268 29. Spherical and ellipsoidal coordinate systems

above the reference sphere. In particular, we abstained from using ℎ′ as a third coordinate.
Instead we used the geocentric radius or distance 𝑟 of the point. This is because the sphere
is not a very good approximation of the surface of the Earth and heights defined with respect
to the sphere are meaningless (e.g. Mount Everest would have a height of 20 km, and the
ocean surface in the Arctic a height of 10 km).

Y

λ

X

Z

r

ψ

Figure 29.1: Spherical coordinates 𝜓, 𝜆, 𝑟 and Cartesian coordinates 𝑋, 𝑌, 𝑍.

29.2. Geographic coordinates (ellipsoidal coordinates)
As shown by Newton in his Principia, 1687, see e.g. [52], a rotating selfgravitating fluid body
in equilibrium takes the form of an oblate ellipsoid. The oblate ellipsoid, or simply ellipsoid,
is a much better approximation for the shape of the Earth than a sphere. An ellipsoid is the
three dimensional surface generated by the rotation of an ellipse about its shorter axis. Two
parameters are required to describe the shape of an ellipsoid. One is invariably the equatorial
radius, which is the semimajor axis, 𝑎. The other parameter is either the polar radius or
semiminor axis, 𝑏, or the flattening, 𝑓, or the eccentricity, 𝑒. They are related by

𝑓 = 𝑎 − 𝑏
𝑎 , 𝑒2 = 2𝑓 − 𝑓2 = 𝑎2 − 𝑏2

𝑎2 , 𝑏 = 𝑎(1 − 𝑓) = 𝑎√1 − 𝑒2 (29.3)

For the Earth the semimajor axis 𝑎 is about 6378 km and semiminor axis 𝑏 about 6357 km, a
21 km difference. The flattening is of the order 1/300, which is indistinguishable in illustrations
if drawn to scale (illustrations, such as in this text, always exaggerate the flattening). Also,
since 𝑓 is a very small number, instead of 𝑓 often the inverse flattening 1/𝑓 is given.

29.2.1. Relation between geographic and Cartesian coordinates
The position of a point with respect to an ellipsoid is given in terms of geographic or geodetic
latitude 𝜑, longitude 𝜆 and height ℎ above the ellipsoid, see Figure 29.2. The relationship
between Cartesian and geographic coordinates is given by,

𝑋 = (�̄� + ℎ) cos𝜑 cos 𝜆
𝑌 = (�̄� + ℎ) cos𝜑 sin 𝜆
𝑍 = (�̄�(1 − 𝑒2) + ℎ) sin𝜑

(29.4)



29.2. Geographic coordinates (ellipsoidal coordinates) 269

Y

λ

X

Z

h

φ

Figure 29.2: Ellipsoidal and Cartesian coordinates. The ellipsoidal latitude 𝜑 is also known as geodetic or geo
graphic latitude. The ellipsoidal coordinates 𝜑 and 𝜆 are also called geographic coordinates.
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Figure 29.3: Ellipsoidal, geodetic or geographic latitude 𝜑, geocentric (or spherical) latitude 𝜓, radius of curvature
�̄� = �̄�(𝜑), radius 𝑟, ellipsoidal height ℎ, semimajor axis 𝑎 and semiminor axis 𝑏 of the ellipsoid. The dashed
line shows the local tangent plane to the ellipsoid.

The inverse relationship is given by,

𝜑 = arctan(𝑍 + 𝑒
2�̄� sin𝜑

√𝑋2 + 𝑌2
)

𝜆 = arctan(𝑌𝑋)

ℎ = √𝑋2 + 𝑌2
cos𝜑 − �̄�

(29.5)

�̄� in Eqs. (29.4) and (29.5) is the radius of curvature in the prime vertical, as shown in
Figure 29.3.

The radius of curvature for an ellipsoid depends on the location on the ellipsoid. It is a
function of the geographic latitude and is different in EastWest and NorthSouth direction.They
are called respectively radius of curvature in the prime vertical, �̄� = �̄�(𝜑), and the radius of
curvature in the meridian, �̄� = �̄�(𝜑), These two radii are not the same as the physical radius,
the distance from the center of the Earth to the ellipsoid. This is different from a sphere,
where all three radii are the same, and have a single value 𝑅. The radius of curvature in the
prime vertical, �̄� = �̄�(𝜑), and the radius of curvature in the meridian, �̄� = �̄�(𝜑), for an



270 29. Spherical and ellipsoidal coordinate systems

ellipsoid are

�̄�(𝜑) = 𝑎

√1 − 𝑒2 sin2 𝜑

�̄�(𝜑) = 𝑎(1 − 𝑒2)
(1 − 𝑒2 sin2 𝜑)3/2

(29.6)

with radius of curvature �̄� normal to �̄�. On the equator the radius of curvature in EastWest is
equal to the semimajor axis 𝑎, with �̄�(0∘) = 𝑎, while the radius of curvature in NorthSouth is
smaller than the semiminor axis, with �̄�(0∘) = 𝑎(1−𝑒2) = 𝑏(1−𝑓) = 𝑏2/𝑎. On the poles the
radius of curvature �̄�(±90∘) = �̄�(±90∘) = 𝑎/√(1 − 𝑒2) = 𝑎2/𝑏 is larger than the semimajor
axis 𝑎, see Figure 29.4.
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Figure 29.4: Radius of curvature �̄�(𝜑) and �̄�(𝜑) as function of latitude 𝜑. The dashed lines represent the
semimajor axis 𝑎 and semiminor axis 𝑏.

29.2.2. Relation to units of length
As a sidestep we consider Northing and Easting as a means to express small differences in
latitude and longitude, between two points on the surface, in units of length, rather than
angles.

Figure 29.5: Local topocentric curvilinear coordinate system, with origin at location (𝜑, 𝜆, ℎ), with Easting and
Northing, 𝑑𝐸 and 𝑑𝑁, and ellipsoidal height difference 𝑑ℎ.
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The radii of curvature play a role in the conversion of small differences in latitude and
longitude into linear distances on the surface of the Earth. If 𝑑𝜑 is the differential latitude in
radians, and 𝑑𝜆 the differential longitude in radians, then

𝑑𝑁 = (�̄�(𝜑) + ℎ) 𝑑𝜑
𝑑𝐸 = (�̄�(𝜑) + ℎ) cos𝜑 𝑑𝜆 (29.7)

with 𝑑𝑁 the differential distance in NorthSouth (latitude) direction, with positive direction to
the North, and 𝑑𝐸 the differential distance in EastWest (longitude) direction, with �̄�(𝜑) and
�̄�(𝜑) the meridian radius of curvature and radius of curvature in the prime vertical as given by
Eq. (29.6) and Figure 29.4. Both 𝑑𝑁 and 𝑑𝐸 are in units of meters and are often referred to as
Northing and Easting, see Figure 29.5. The relations in Eq. (29.7) come in very handy if you
wish to express small differences in latitude and longitude in units of meters. This happens for
instance when you have latitude and longitude for two nearby points, but instead of a latitude
and longitude differences in angular units, you are more interested to have the difference in
meters. It is also very useful to convert for instance standard deviations in angular units to
standard deviations in meters. For a first approximation, e.g. when differences in latitude and
longitude are small or when accuracy does not matter, �̄�(𝜑) + ℎ and �̄�(𝜑) + ℎ in Eq. (29.7)
can be replaced simply by the radius 𝑅 of the spherical Earth.

29.2.3. Computational aspects
The geographic latitude in Eq. (29.5) must be computed by an iteration process as the geo
graphic latitude 𝜑 appears both in the left and right hand side of the equation. Also note that
the radius of curvature �̄� in Eq. (29.6), which is a function of the geographic latitude (that still
needs to be computed by Eq. (29.5)), can be computed by the same iteration process. The
iterative procedure, whereby in the first iteration 𝑁′ = �̄� sin𝜑 is approximated by 𝑍, reads

𝑁′0 = 𝑍
for 𝑖 = 1, 2, …

𝜑𝑖 = arctan(𝑍 + 𝑒
2𝑁′𝑖−1

√𝑋2 + 𝑌2
)

�̄�𝑖 =
𝑎

√1 − 𝑒2 sin2 𝜑𝑖
𝑁′𝑖 = �̄�𝑖 sin𝜑𝑖

(29.8)

Usually four iterations are sufficient. For points near the surface of the Earth 𝜑 can also be
computed using a direct method of B.R. Bowring [72],

𝜑 = arctan( 𝑍 + 𝑒′2𝑏 sin3 𝜇
√𝑋2 + 𝑌2 − 𝑒2𝑎 cos3 𝜇

) (29.9)

with 𝑒′2, also called the second eccentricity, and 𝜇 given by

𝑒′2 = 𝑒2
1 − 𝑒2 =

𝑎2 − 𝑏2
𝑏2

𝜇 = arctan( 𝑎𝑍
𝑏√𝑋2 + 𝑌2

)
(29.10)

The error introduced by this method is negligible for points between 5 and 10 km from the
Earth surface, and, certainly much smaller than the error after four iterations with the iterative
method.
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The relation between the geocentric latitude 𝜓 and the geodetic (or geographic) latitude
𝜑 for a point on the surface of the Earth, see Figure 29.3, is

𝜓(𝜑) = arctan(�̄�(1 − 𝑒
2) + ℎ

�̄� + ℎ tan𝜑) ≃ arctan((1 − 𝑒2) tan𝜑) | ℎ ≪ �̄� (29.11)

The geodetic and geocentric latitudes are equal at the equator and poles. The maximum
difference of 𝜑 − 𝜓 is approximately 11.5 minutes of arc1 at a geodetic latitude of 45∘5′.
The geocentric and geodetic longitude are always the same. However, it is important not to
confuse geocentric and geodetic latitude, which otherwise could result in an error in position
of up to 20 km.

29.3. Astronomical latitude and longitude
The normal, or vertical, to the ellipsoidal surface is the coordinate line that corresponds to ℎ
and �̄�(𝜑). The ellipsoidal normal at the observation point (𝜑, 𝜆) is given by the unit direction
vector �̄�

�̄� = (
cos𝜑 cos 𝜆
cos𝜑 sin 𝜆

sin𝜑
) (29.12)

The ellipsoidal normal does not pass through the centre of the ellipsoid, see Figure 29.3,
except at the equator and at the poles.

In general, the ellipsoidal normal does not coincide with the true vertical, 𝐧, or plumbline
(in Dutch: schietlood) given by the direction of the local gravity field, 𝐠, at that point. Gravity
is the resultant of the gravitational acceleration and the centrifugal acceleration at that point,
see Chapter 32. The direction of the true vertical 𝐧 is given by the astronomical latitude 𝜙
and longitude Λ,

𝐧 = −𝐠𝑔 = (
cos𝜙 cosΛ
cos𝜙 sinΛ

sin𝜙
) (29.13)

with 𝑔 = ‖𝐠‖. The astronomical latitude and longitude can be determined through (zenith)
measurements to the stars. The astronomical latitude 𝜙 is the angle between the equatorial
plane and the true vertical at a point on the surface; the ellipsoidal, geodetic or geographic
latitude 𝜑 is the angle between the equatorial plane and the ellipsoidal normal. A similar
distinction exists for the astronomical longitude Λ and ellipsoidal longitude 𝜆. The ellipsoid
is a purely geometric shape, but astronomical latitude and longitude are driven by physics,
namely the direction of gravity.

The angle between the directions of the ellipsoidal normal and true vertical at a point is
called the deflection of the vertical. The deflection of the vertical is divided in two components,
defined as,

𝜉 = 𝜙 − 𝜑
𝜂 = (Λ − 𝜆) cos𝜑 (29.14)

Astronomical latitude 𝜙 and longitude Λ are obtained from astronomical observations to stars
whose positions (declination 𝛿 and right ascension 𝛼 ) in a celestial reference system are

11 minute of arc is 1/60 of a degree; so 11.5 minutes of arc is equal to 11.5/60 ≃ 0.19∘
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Figure 29.6: Local righthanded Cartesian topocentric system in point A, with ellipsoidal coordinates (𝜑, 𝜆, ℎ),
with the local azimuth 𝛼 and zenith angle 𝜁 for the direction 𝐴𝐵. The vertical (ellipsoidal normal vector) �̄� is the
third axis of the local righthanded system , �̄�𝐸 is the first axis and is orthogonal to the plane of the meridian and
positive to the East, and �̄�𝑁 = �̄� × �̄�𝐸, in the plane of the meridian, is the second axis completing the topocentric
system. Vectors �̄�𝑁 and �̄�𝐸 together span the local tangent plane to the ellipsoid, see Figure 29.3. The bar on top
of these three vectors denotes that they are related to the ellipsoid.

accurately known, or from gravity observations using gravimeters2. The deflection of the
vertical is usually only a few seconds of arc, whereby the largest values occur in mountainous
areas and in areas with large gravity anomalies. We briefly elaborate on the deflection of the
vertical in Section 32.6.

29.4. Topocentric coordinates, azimuth and zenith angle [*]
It is not always convenient to use Cartesian coordinates in a global reference system with the
origin in the center of mass of the Earth. Sometimes it is more convenient to choose the origin
in a point on or near the surface of the Earth, and define the coordinate axes with respect to
the local vertical and geographic North. This type of 3D Cartesian coordinate system is called
a local topocentric coordinate system and its coordinates are called topocentric coordinates.
In Figure 29.6 the origin of the local Cartesian topocentric system is the (observation) point
A with geographic coordinates (𝜑, 𝜆, ℎ). The vectors �̄�𝐸, �̄�𝑁 and �̄� form the three axes of a
righthanded local topocentric system centered at A, with the third axis along the normal of
the ellipsoid �̄�, the first axis �̄�𝐸 orthogonal to the plane of the meridian and positive to the
East, and the second axis �̄�𝑁 = �̄�× �̄�𝐸 in the plane of the meridian completing the topocentric
system. The coordinates in the local Cartesian topocentric system are denoted by 𝐸 (East), 𝑁
(North) and 𝑈 (Up). The system itself is also called a EastNorthUp (ENU) coordinate system.

In principle it is possible to work with coordinates (𝐸, 𝑁, 𝑈) which are defined with respect
to the origin 𝐴 in Figure 29.6 and use the 7parameter similarity transformation of Eq. (28.8) to
convert between (𝐸, 𝑁, 𝑈) and (𝑋, 𝑌, 𝑍) coordinates. However, when dealing with two points
(and neither one the origin 𝐴), it is more convenient to work with coordinate differences
(Δ𝐸, Δ𝑁, Δ𝑈) and (Δ𝑋, Δ𝑌, Δ𝑍) . The relation between the differential coordinates (Δ𝑋, Δ𝑌, Δ𝑍)

2Astronomical latitude is not to be confused with declination, the coordinate astronomers use in a similar way to
describe the locations of stars North/South of the celestial equator, nor with ecliptic latitude, the coordinate that
astronomers use to describe the locations of stars North/South of the ecliptic.
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and (Δ𝐸, Δ𝑁, Δ𝑈) is,

(
Δ𝑋
Δ𝑌
Δ𝑍

) = (
− sin 𝜆 − sin𝜑 cos 𝜆 cos𝜑 cos 𝜆
cos 𝜆 − sin𝜑 sin 𝜆 cos𝜑 sin 𝜆
0 cos𝜑 sin𝜑

)(
Δ𝐸
Δ𝑁
Δ𝑈

)

= ( �̄�𝐸 �̄�𝑁 �̄� ) (
Δ𝐸
Δ𝑁
Δ𝑈

)

(29.15)

with �̄�𝐸, �̄�𝑁 and �̄� the three axes of a righthanded local topocentric system centered at
the observation point (𝜑, 𝜆, ℎ). With coordinate differences any translation cancels and the
transformation matrix of Eq. (29.15) can be found by two rotations as 𝑅3(−𝜆 −

𝜋
2 )𝑅1(𝜑 −

𝜋
2 ),

cf. Eq. (28.12) and Figure 29.6.
The inverse relation of Eq. (29.15) is,

(
Δ𝐸
Δ𝑁
Δ𝑈

) = ( �̄�𝐸 �̄�𝑁 �̄� )−1 (
Δ𝑋
Δ𝑌
Δ𝑍

) = ( �̄�𝐸 �̄�𝑁 �̄� )𝑇 (
Δ𝑋
Δ𝑌
Δ𝑍

) (29.16)

where we used the property that the inverse of a rotation matrix is the transpose of the matrix.
Here the transformation follows as 𝑅1(

𝜋
2 − 𝜑)𝑅3(𝜆 +

𝜋
2 ).

The azimuth is counted by convention from the North and towards the East. For example,
in a local topocentric system a point to the North has azimuth 𝛼 of 0∘, and a point to the East
+90∘, see Figure 29.6. The azimuth 𝛼 and zenith angle 𝜁 are defined by,

(
Δ𝐸
Δ𝑁
Δ𝑈

) = 𝑠(
sin𝛼 sin 𝜁
cos𝛼 sin 𝜁

cos 𝜁
) (29.17)

with 𝑠 the slant range √Δ𝐸2 + Δ𝑁2 + Δ𝑈2. The inverse relation is,

𝛼 = arctan( Δ𝐸Δ𝑁) = arctan(< 𝐞𝐸 , 𝐬 >< 𝐞𝑁 , 𝐬 >
)

𝜁 = arctan(√Δ𝐸
2 + Δ𝑁2
Δ𝑈 ) = arccos(Δ𝑈𝑠 ) = arccos(< �̄�, 𝐬 >𝑠 )

𝑠 = √Δ𝐸2 + Δ𝑁2 + Δ𝑈2 = √Δ𝑋2 + Δ𝑌2 + Δ𝑍2 = √< 𝐬, 𝐬 >

(29.18)

with 𝐬 = (Δ𝑋, Δ𝑌, Δ𝑍)𝑇. Compare this to Eq. (28.4), of Chapter 28, where the azimuth and
zenith angles were defined in general terms of 𝑋, 𝑌 and 𝑍 coordinates for a topocentric system,
whereas in this section the coordinates for the topocentric system have been named 𝐸 (East),
𝑁 (North) and 𝑈 (Up) to emphasize the topocentric nature of the system. If the azimuth 𝛼
and zenith angle 𝜁 are computed in point A, the origin of the topocentric system, as shown in
Figure 29.6, then (Δ𝐸, Δ𝑁, Δ𝑈) in Eqs. (29.15), (29.16), (29.17) and (29.18) can be replaced
by (𝐸, 𝑁, 𝑈), and (Δ𝑋, Δ𝑌, Δ𝑍) equals (𝑋 − 𝑋𝐴, 𝑌 − 𝑌𝐴, 𝑍 − 𝑍𝐴), with (𝑋𝐴, 𝑌𝐴, 𝑍𝐴) the 3D global
Cartesian coordinates of point A computed by Eq. (29.4).

The order of the coordinates in Eqs. (29.15) and (29.16) is sometimes changed, with the
𝑁 (North) coordinates given before the 𝐸 (East) coordinate. This forms a lefthanded coordi
nates system and is called a NorthEastUp (NEU) system. It follows the common practice for
geographic coordinates of giving the latitude before the longitude.

The coordinates 𝐸 and 𝑁 (Δ𝐸 and Δ𝑁) are sometimes also referred to as Easting and Nor
thing, however, Northing and Easting have been defined before in Eq. (29.7) of Section 29.2.2,
and the two are not exactly the same.
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In Section 29.2.2, differential ellipsoidal coordinates 𝑑𝜑 and 𝑑𝜆), given in radians, were
expressed in Northing 𝑑𝑁 and Easting 𝑑𝐸 in meters, using the relation of Eq. (29.7)

𝑑𝑁 = (�̄�(𝜑) + ℎ) 𝑑𝜑
𝑑𝐸 = (�̄�(𝜑) + ℎ) cos𝜑 𝑑𝜆

with 𝑑𝑁 the differential in NorthSouth (latitude) direction, with positive direction to the North,
and 𝑑𝐸 the differential in EastWest (longitude) direction. �̄�(𝜑) and �̄�(𝜑) are the meridian
radius of curvature and radius of curvature in the prime vertical as given by Eq. (29.6) and
Figure 29.4. 𝑑𝜑 and 𝑑𝜆 must be given in units of radians, but 𝑑𝑁 and 𝑑𝐸 are in units of
meters.

The difference with Δ𝑁 and Δ𝐸 is that 𝑑𝑁 and 𝑑𝐸 are curvilinear coordinates, whereas
𝑁 and 𝐸 are Cartesian coordinates. For small values of Δ𝑁 and Δ𝐸 we have 𝑑𝑁 ≃ Δ𝑁 and
𝑑𝐸 ≃ Δ𝐸, but although 𝑑ℎ ≃ Δ𝑈, the surface 𝑑ℎ = const represents a curved surface,
whereas Δ𝑈 = const is a plane tangent to the curved Earth. While we may get away with the
approximation 𝑑𝑁 ≃ Δ𝑁 or 𝑑𝐸 ≃ Δ𝐸, it is a bad idea to mix 𝑈 and ℎ.

The algorithms that involve (Δ𝑋, Δ𝑌, Δ𝑍), (Δ𝑁, Δ𝐸, Δ𝑈), or, the azimuth 𝛼 and zenith angle
𝜁 can be used with very large values, provided (Δ𝑁, Δ𝐸, Δ𝑈) are interpreted as coordinates
in a local topocentric lefthanded system. The latter comes in very useful for computation of
azimuth and zenith angles of Earth satellites for a point on the surface of the Earth.

The algorithms that involve 𝑑𝜑, 𝑑𝜆 and 𝑑ℎ, or 𝑑𝑁, 𝑑𝐸 and 𝑑ℎ, are only valid for small
values or over the surface of the Earth. They are useful mainly for observations are made at
eccentric stations, or to transform velocities in the Cartesian system to velocities in the ellip
soidal system, or to propagate error estimates (standard deviations, variances, covariances)
from the Cartesian system into the ellipsoidal system, or viceversa.

To add to the possible confusion, mapcoordinates, resulting from a map projection, are
also often called Easting and Northing, see Chapter 30. However, the two definitions of Easting
and Northing that were discussed in this section are actually examples of two different map
projections.

29.5. Practical aspects of using latitude and longitude
The ellipsoidal height differs by not more than 100 m from an equipotential surface, or a true
height coordinate surface, and the ellipsoidal normals agree with the true vertical to within a
few seconds of arc. There are no other simple rotational shapes that would match the true
Earth better than an ellipsoid.

The ellipsoidal, geodetic, or geographical, latitude and longitude are therefore the most
common representation to describe the position of points on the Earth. And invariably, when
we use latitude and longitude without any further reference, this is almost always the ellip
soidal, geodetic or geographic latitude and longitude! However, the geodetic latitude 𝜑 should
never be confused with the geocentric or spherical latitude 𝜓, or astronomical latitude 𝜙, which
are two different types of coordinates. Also you should not confuse geodetic longitude 𝜆 with
astronomical longitude Λ. For the ellipsoidal height ℎ it is a different story. Because the ellip
soid is off from an equipotential surface by up to 100 meter, the ellipsoidal height ℎ is not a
suitable coordinate for a height reference system. But, contrary to Cartesian coordinates, with
ellipsoidal coordinates we can easily separate between ‘horizontal’ and ‘vertical’ coordinates.
And, as you will see in Chapter 33 on height systems, we can replace the ellipsoidal height ℎ
by the orthometric height 𝐻, with 𝐻 = ℎ−𝑁(𝜑, 𝜆) and 𝑁(𝜑, 𝜆) the socalled geoid height (see
Chapter 32). This leaves us with a couple of options to represent positions

• use Cartesian coordinates 𝑋, 𝑌 and 𝑍 to represent positions in three dimensions
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Figure 29.7: Latitude and longitude grid as seen from outer space (orthographic azimuthal projection). The prime
meridian (through Greenwich) and equator are in black with latitude and longitude labels. The meridian and
parallel through Karachi, Pakistan, 25∘45′N 67∘01′E, are the dotted lines in red. Meridians are great circles with
constant longitude that run from North to South. Parallels are small circles with constant latitude (the equator is
also a great circle).

• use geographic coordinates and/or height

– ellipsoidal latitude 𝜑 and longitude 𝜆 to represent positions on the surface of the
Earth, with, or, without

– ellipsoidal height ℎ or orthometric height 𝐻 to represent the vertical dimension

The latitude and longitude can be used with, and, without height information, or vice
versa. In case no height information is provided it may be assumed that the positions are
on the ellipsoid or another reference surface. The reference surface can be a theoretical
surface, such as the ellipsoid, or modeled by a digital (terrain) model (with heights given
on a regular grid or as a series of (base) functions).

The mesh formed by the lines of constant latitude and constant longitude forms a graticule
that is linked to the rotation axis of the Earth, as is shown in Figure 29.7. The poles are
where the axis of rotation of the Earth intersects the reference surface. Meridians are lines of
constant longitude that run over the reference surface from the North Pole to the South pole.
By convention, one of these, the Prime Meridian, which passes through the Royal Observatory,
Greenwich, England, is assigned zero degrees longitude. The longitude of other places is given
as the angle East or West from the Prime Meridian, ranging from 0∘ at the Prime Meridian to
180∘ Eastward (written 180∘ E or +180∘) and 180∘ Westward (written 180∘ W or −180∘) of
the Prime Meridian. The plane through the center of the Earth and orthogonal to the rotation
axis intersects the reference surface in a great circle is called the equator. A great circle is
the intersection of a sphere and a plane which passes through the center point of the sphere,
otherwise the intersection is called small circle. Planes parallel to the equatorial plane intersect
the surface in circles of constant latitude; these are the parallels. Parallels are small circles.
The equator has a latitude of 0∘, the North pole has a latitude of 90∘ North (written 90∘ N or
+90∘), and the South pole has a latitude of 90∘ South (written 90∘ S or −90∘). The latitude
of an arbitrary point is the angle between the equatorial plane and the radius to that point.

Degrees of longitude and latitude can be subdivided into 60 minutes of arc, each of which
is divided into 60 seconds of arc. A longitude or latitude is thus specified in sexagesimal
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Figure 29.8: The latitude and longitude grid over the NorthSea in an equidistant conic projection of uniform scale.
One degree of latitude is about 60 nm (Nautical miles), or more precisely 111.2 km at 50∘ and 111.4 km at 60∘
latitude. However, one degree of longitude is much shorter, it varies between 71.7 km on the 50∘ parallel and just
55.8 km on the 60∘ parallel. This is because the meridians converge to the North.

notation as 23∘27′30” [EWNS]. The seconds can include a decimal fraction. An alternative
representation uses decimal degrees, whereby degrees are expressed as a decimal fraction:
23.45833∘ [EWNS]. Another option is to express minutes with a fraction: 23∘27.5′ [EWNS].
The [EWNS]3 suffix can be replaced by a sign: the convention is to use a negative sign for
West and South, and a positive sign for East and North. Further, for calculations decimal
degrees may be converted to radians. Note that the longitude is singular at the Poles and
calculations that are sufficiently accurate for other positions, may be inaccurate at or near the
Poles. Also the discontinuity at the ±180∘ meridian must be handled with care in calculations,
for example when subtracting or adding two longitudes.

One minute of arc of latitude measured along the meridian corresponds to one nautical
mile (1852 m). The nautical mile, which is a nonSI unit, is very popular with navigators in
shipping and aviation because of its convenience when working with nautical charts (which
often have a varying scale): a distance measured with a chart divider can be converted to
nautical miles using the chart’s latitude scale. This only works with the latitude scale, but
not the longitude scale, which follows directly from Eq. (29.7) (on account of the term cos𝜑,
which result in the meridians converging at the poles), as is shown in Figure 29.8 for the
NorthSea area. From Eq. (29.7) it also follows that one degree of arc of latitude measured
along the meridian is between 110.57 km at the equator and 111.69 km at the poles4. Thus,
at 52∘ latitude, one arcsecond (1″) along the meridian corresponds to roughly 30.9 m and
one arcsecond along the 52∘ parallel to roughly 19.0 m.

Latitude and longitude are angular measures that work well to pinpoint a position, but,
calculations using the latitude and longitude can be quite involved. For example, the compu

3in Dutch we use the terms O.L. (Oosterlengte) for E, W.L. (Westerlengte) for W, N.B. (Noorderbreedte) for N and
Z.B. (Zuiderbreedte) for S
4In surveying and geodesy a circle is not divided in 360∘ but in 400 gon or grad. This has the added advantage that
one gon (grad) measured along the meridian corresponds to 100 km, and one milligon (milligrad) to 100 m, a
decimilligon (decimilligrad, 10−4 grad) to 10 m and 10−7 gon (grad) corresponds to 1 cm. However, this ‘decimal’
system for angular measurement never gained a big following outside surveying. But, be aware, quite often
surveying equipment uses gon or grad to measure arcs instead of degrees.
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Figure 29.9: Great circle (blue), rhumb line or loxodrome (red) and straight line (black dashed) between Delft,
NL, 52∘N 4.37∘E and San Diego, CA, USA, 32.8∘N 117.1∘W. The plot on the left uses an orthographic azimuthal
projection, with the Earth as seen from outer space, while the plot on the right uses the Mercator projection. The
great circle, rhumb line and straight line distances are 9005, 10077 and 8294 km respectively. The straight line
(black dashed) passes through the Earth lower mantle, with a deepest point of 1529 km below the Hudson Strait,
Northern Canada, 61.0∘N 71.7∘W. This is also the halfway point for a traveler following the great circle route
(blue), which is the shortest route over the Earth surface from Delft to San Diego. The course a traveler is steering
on this route varies between NW (313.5∘) when leaving Delft and SSW (212.1∘) when arriving in San Diego. A
rhumb line on the other hand crosses meridians always at the same angle. A traveler following the rhumb line
or loxodrome (red) from Delft to San Diego would have to steer a constant WSW course (257.8∘). Rhumb lines
become straight lines in a Mercator projection.

tation of distance, angles and surface area, is far from straightforward and very different from
computations using twodimensional Cartesian coordinates. In general users are left with two
options: (1) use spherical or ellipsoidal computations, or, (2) first map the latitude and lon
gitude to twodimensional Cartesian coordinates 𝑥 and 𝑦, and then do all the computations
in the twodimensional (map) plane. The second option involves a socalled map projection.
Computations on the sphere or ellipsoid are discussed in Section 29.6, map projections are
discussed in Chapter 30.

29.6. Spherical and ellipsoidal computations [*]
Distances have different meanings. For instance, the distance between an observer in Delft
and a satellite orbiting the Earth is the straight line distance computed from the 3D Cartesian
coordinates of both points. If the coordinates of the observer are given in geographical co
ordinates, these are first converted into Cartesian coordinates; something for which also the
height above the ellipsoid is needed (unless the station is assumed to lie on the ellipsoid). On
the other hand, for the distance between two places on the ellipsoid, say Delft (NL) and San
Diego (CA, USA), the shortest distance over the sphere or ellipsoid is required, and not the
straight line distance.

The equivalent of a straight line in Euclidean geometry for spherical and ellipsoidal ge
ometry is the shortest path between points on a sphere or ellipsoid, which is called geodesic
(in Dutch: geodetische lijn). On a sphere geodesics are great circles. This is illustrated in
Figure 29.9. Similar geometric concepts are defined in spherical and ellipsoidal geometry as
in Euclidean geometry, replacing straight lines by great circles and geodesics. For instance, in
spherical geometry angles are defined between great circles, resulting in spherical trigonom
etry.

The solution of many problems in geodesy and navigation, as well as in some branches of
mathematics, involve finding solutions of two main problems:
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Direct (first) geodetic problem Given the latitude 𝜑1 and longitude 𝜆1 of point P1, and
the azimuth 𝛼1 and distance 𝑠12 from point P1 to P2, determine the latitude 𝜑2 and
longitude 𝜆2 of point P2, and azimuth 𝛼2 in point P2 to P1.

Inverse (second) geodetic problem Given the latitude 𝜑1 and longitude 𝜆1 of point P1,
and latitude 𝜑2 and longitude 𝜆2 of point P2, determine the distance 𝑠12 between point
P1 and P2, azimuth 𝛼1 from P1 to P2, and azimuth 𝛼2 from P2 to P1.

On a sphere the solutions to both problems are (simple) exercises in spherical trigonometry. On
an ellipsoid the computation is much more involved. Work on ellipsoidal solutions was carried
out by for example Legrendre, Bessel, Gauss, Laplace, Helmert and many others after them.
The starting point is writing the geodesic as a differential equation relating an elementary
segment with azimuth 𝛼 and length 𝑑𝑠 to differential ellipsoidal coordinates (𝑑𝜑, 𝑑𝜆),

𝑑𝜑
𝑑𝑠 =

cos𝛼
�̄�(𝜑)

𝑑𝜆
𝑑𝑠 =

sin𝛼
�̄�(𝜑) cos𝜑

(29.19)

with �̄�(𝜑) the meridian radius of curvature and �̄�(𝜑) the radius of curvature in the prime
vertical as given by Eq. (29.6) and Figure 29.4, and with �̄�(𝜑) cos𝜑 the radius of the circle
of latitude 𝜑. See also Eq. (29.7) which gives similar relations for Northing 𝑑𝑁 and Easting
𝑑𝐸. These equations hold for any curve. For specific curves the variation of the azimuth 𝑑𝛼
must be specified in relation to 𝑑𝑠. For example, for the rumbline, the curve that makes equal
angles with the local meridian, 𝑑𝛼/𝑑𝑠 = 0. For the geodesic this relation is

𝑑𝛼
𝑑𝑠 = sin𝜑𝑑𝜆𝑑𝑠 =

tan𝜑
�̄�(𝜑) sin𝛼 (29.20)

Eqs. (29.20) and (29.19) form a complete set of differential equations for the geodesic. These
differential equations can be used to solve the direct and inverse geodetic problems numer
ically. Other solutions involve evaluating integral equations that can be derived from these
differential equations. In geodetic applications where 𝑓 is small, the integrals are typically
evaluated as a series or using iterations. The treatment of this complicated topic goes beyond
the level of this book.

On a sphere the solution of the direct and inverse geodetic problem can be found using
spherical trigonometry resulting in closed formula. These formula are important for navigation.

Finding the course and distance through spherical trigonometry is a special application of
the inverse geodetic problem. The inital and final course 𝛼1 and 𝛼2, and distance 𝑠12 along
the great circle, are

tan𝛼1 =
sin 𝜆12

cos𝜙1 tan𝜙2 − sin𝜙1 cos 𝜆12
tan𝛼2 =

sin 𝜆12
− cos𝜙2 tan𝜙1 + sin𝜙2 cos 𝜆12

cos𝜎12 = sin𝜙1 sin𝜙2 + cos𝜙1 cos𝜙2 cos 𝜆12

(29.21)

with 𝜆12 = 𝜆2 − 𝜆15. The distance is given by 𝑠12 = 𝑅 𝜎12, where 𝜎12 is the central angle
(in radians) between the two points and 𝑅 the Earth radius. For practical computations the
5Please note that in this equation the𝜙 is used for the latitude, but strictly, since this is a computation on the sphere,
we should have used the geocentric latitude 𝜓. However, as these formules are often used as an approximation
to the more difficult problem on the ellipsoid, you find them often expressed in 𝜙 instead of 𝜓.
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quadrants of the arctangens are determined by the signs of the numerator and denominator
in the tangent formulas (e.g., using the atan2 function). Using the mean Earth radius yields
distances to within 1% of the geodesic distance on the WGS84 ellipsoid.

Finding waypoints, the positions of selected points on the great circle between P1 and P2,
through spherical trigonometry is a special application of the direct geodetic problem. Given
the initial course 𝛼1 and distance 𝑠12 along the great circle, the latitude and longitude of P2
are found by,

tan𝜙2 =
sin𝜙1 cos𝜎12 + cos𝜙1 sin𝜎12 cos𝛼1

√(cos𝜙1 cos𝜎12 − sin𝜙1 sin𝜎12 cos𝛼1)2 + (sin𝜎12 sin𝛼1)2

tan 𝜆12 =
sin𝜎12 sin𝛼1

cos𝜙1 cos𝜎12 − sin𝜙1 sin𝜎12 cos𝛼1
tan𝛼2 =

sin𝛼1
cos𝜎12 cos𝛼1 − tan𝜙1 sin𝜎12

(29.22)

with 𝜎12 = 𝑠12/𝑅 the central angle in radians and 𝑅 the Earth radius, and 𝜆2 = 𝜆1 + 𝜆12.
The corresponding formulas for on the ellipsoid can be found in e.g. [73].
Computations on the sphere, let alone the ellipsoid, are quite complicated. Other tasks

than the direct and inverse geodetic problem, such as the computation of the area on a
sphere or ellipsoid, which is simple in a 2D Cartesian geometry, require even more complicated
computations. Instead a different approach can be taken, which consists of a mapping of the
latitude and longitude (𝜑, 𝜆)𝑖 to grid coordinates (𝑥, 𝑦)𝑖 in a 2D Cartesian geometry, known as
map projection.

29.7. Exercises and worked examples
This section presents several exercises on working with ellipsoidal coordinates.

Question 1 The geographic position coordinates of a geodetic marker in Vlissingen are
given as 51∘26′34.3501″ North, 3∘35′50.3686″ East (in ETRS89). Express the geographic
position coordinates (latitude and longitude) in decimal degrees.

Answer 1 Going from an angle expressed in degrees, minutes and seconds to decimal
degrees, means taking the amount of degrees, adding the number of minutes divided by
60, and adding the number of seconds divided by 3600. This yields 𝜑 = 51.442875∘ North,
𝜆 = 3.597325∘ East.

Question 2 The geographic position coordinates of a geodetic marker on Terschelling are
given as 53.362736∘ North, and 5.219386∘ East (in ETRS89). Express the geographic position
coordinates (latitude and longitude) in degrees, arcminutes and arcseconds.

Answer 2 Going from an angle expressed in decimal degrees to degrees, minutes and
seconds of arc, means taking the decimal part and multiplying it by 60 and the integer part
yields the number of minutes; next taking the original decimal part again, and subtracting
the integer number of minutes divided by 60, and multiplying this by 3600. This yields 𝜑 =
53∘21′45.8496″ North, 𝜆 = 5∘13′9.7896″ East.

Question 3 For the WGS84 ellipsoid, the semimajor axis is given as 𝑎 = 6378137.000
m. And the flattening is 𝑓 = 1/298.257223563. Compute the length of the semiminor axis
𝑏, and also the eccentricity 𝑒.

Answer 3 The eccentricity 𝑒 and semiminor axis follow from Eq. (29.3), this results in
𝑒 = 0.081819191 and 𝑏 = 6356752.314 m, hence the distance from the pole to the Earth’s
center is about 21 km shorter than the distance from the equator to the Earth’s center.
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Question 4 The geographic position coordinates of a geodetic marker on Terschelling are
given as 𝜑 = 53.362736∘ North, 𝜆 = 5.219386∘ East (in ETRS89), and ℎ = 56.098 m. Express
the position coordinates in Cartesian coordinates. The ellipsoidal parameters of the WGS84
ellipsoid can be found in Table 31.1.

Answer 4 Converting geographic coordinates into Cartesian coordinates is done through
Eq. (29.4), with the expression for the radius of curvature in the prime vertical in Eq. (29.6).
At the given latitude, the radius is �̄�(𝜑) = 6391928 m. The Cartesian coordinates are 𝑋 =
3798580.857 m, 𝑌 = 346993.872 m, 𝑍 = 5094780.835 m.

Question 5 The Cartesian coordinates of a location (in the Atlantic Ocean) are given as
𝑋 = 6378137.000 m, 𝑌 = 0.000 m, 𝑍 = 0.000 m. Compute, using the WGS84 ellipsoid (see
Table 31.1), the geographic coordinates of this location.

Answer 5 The formal computation goes through Eqs. (29.5) and (29.6), and requires an
iteration, see Eq. (29.8). However, in this special case, as we note that 𝑍 = 0.000 m, we can
immediately conclude that this location lies in the equatorial plane, and latitude 𝜑 = 0∘. The
longitude follows easily as 𝜆 = 0∘. And eventually the ellipsoidal height ℎ = 0.000 m, as the
radius of curvature in the prime vertical equals �̄� = 𝑎 = 6378137.000 m, see also Figure 29.4.

Question 6 The position of a GPS receiver on the Delft campus is computed in 2015
using two different processing services: NETPOS and NRCAN. The result from the NETPOS
processing service, given in ETRS89, is 𝜑1 = 51∘59′50.80858” North, 𝜆1 = 4∘22′33.0427” East
and ℎ1 = 43.5579 m. The result from the NRCAN processing service, given in ITRF2008, is
𝜑2 = 51∘59′50.82510” North, 𝜆2 = 4∘22′33.0659” East and ℎ2 = 43.5490 m. After conversion
to ETRS89 the coordinates from the NRCAN processing are 𝜑3 = 51∘59′50.80910” North,
𝜆3 = 4∘22′33.0433” East and ℎ3 = 43.5513 m. Compute the differences in meters between
the NETPOS and NRCAN processing, both in ETRS89, and compute the differences in meters
between the ITRF2008 and ETRS89 solutions for NRCAN.

Answer 6 It is clear that the differences are very small, only a fraction of a second of arc.
The difference between the NETPOS and NRCAN solution, both in ETRS89, is Δ𝜑 = 𝜑3−𝜑1 =
0.00052” , Δ𝜆 = 𝜆3 − 𝜆1 = 0.0006” and Δℎ = ℎ3 − ℎ1 = 0.0266 m. To convert the differences
into units of meters Eq. (29.7) is used. At 52∘ latitude we have

Δ𝑁[m] = 𝜋
180 ∗ 3600 ∗ 6391000 ∗ Δ𝜑[”] ≃ 31.0 ∗ Δ𝜑[”]

Δ𝐸[m] = 𝜋
180 ∗ 3600 ∗ 6376000 ∗ cos(𝜑) ∗ Δ𝜆[”] ≃ 19.0 ∗ Δ𝜆[”]

whereby we obtained �̄�(𝜑) ≃ 6391 km and �̄�(𝜑) ≃ 6376 km from Figure 29.4 or Eq. (29.6).
Note that 𝑅 = 6371 km instead of �̄�(𝜑) and �̄�(𝜑) would have given a more or less similar
result. The difference between the NETPOS and NRCAN solution is thus Δ𝑁 = 31∗0.00052” =
0.0161 m , Δ𝐸 = 19∗0.0006” = 0.0114 m and Δℎ = −0.0266 m. The differences between the
two solutions are in the order of centimeters.

The difference between the ETRS89 and ITRF2008 solution is Δ𝜑 = 𝜑2 − 𝜑3 = 0.01600”,
Δ𝜆 = 𝜆2 − 𝜆3 = 0.0226” and Δℎ = ℎ2 − ℎ3 = −0.0177 m. To convert the differences into
units of meters again Eq. (29.7) is used, which results in Δ𝑁 = 31 ∗ 0.016” = 0.496 m,
Δ𝐸 = 19.088 ∗ 0.0226” = 0.429 m and Δℎ = −0.0177 m.

Please note that the horizontal differences between the ITRF2008 and ETRS89 solutions
of NRCAN, at decimeter level, are much larger than the differences between NRCAN and
NETPOS solutions in the same reference frame. This is due to ETRS89 moving along with the
European plate, with station velocities in Europe close to zero, whereas in ITRF2008 Delft is
moving yearly 2.3 cm to the NorthEast. Over a period of 26 years (the epoch of observation,
2015, minus 1989, the year ETRS89 and ITRF2008 coincided), this corresponds to about
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0.60 m. See also Chapter 34 for more information. It also shows the importance of datum
transformations, which we used to convert ITRF2008 coordinates to ETRS89, and is the topic
of Chapter 31.



30
Map projections

Geographic latitude and longitude are convenient for expressing positions on the Earth, but
computations on the sphere, let alone the ellipsoid, are quite complicated as we have seen in
the previous chapter. Instead a different approach can be taken, which consists of a mapping
of the latitude and longitude (𝜑, 𝜆)𝑖 to grid coordinates (𝑥, 𝑦)𝑖 in a 2D Cartesian geometry. A
curved surface is mapped onto a flat plane. This is known as a map projection. From then on
simple 2D Euclidian geometry can be used.

30.1. Introduction
Map projections are used in both cartography and geodesy. The output of a map projection
in cartography is usually a small scale map, on paper, or in a digital format. The required
accuracy of the mapping is low and a sphere may be safely used as the surface to be mapped.
In cartography it is more about appearance and visual information than accuracy of the coor
dinates.

In geodesy a map projection is more a mathematical device that transfers the set of geo
graphical coordinates (𝜑, 𝜆) into a set of planar coordinates (𝑥, 𝑦) without loss of information.
The relation can therefore also be inverted (i.e. undone). It implies that an ellipsoid should
be used as the surface to be mapped. This also applies for medium and large scale maps, and
coordinates that are held digitally in a Geographic Information System (GIS) or other infor
mation system. In this book a map projection is defined as the mathematical transformation

𝑥 = 𝑔(𝜑, 𝜆, ℎ)
𝑦 = 𝑓(𝜑, 𝜆, ℎ) (30.1)

whereby ℎ is implicitly given as zero (ℎ = 0), meaning points are first projected on the surface
of the ellipsoid. The coordinates (𝑥, 𝑦) are calledmap or grid coordinates. The grid coordinates
are often referred to as Easting (𝑥) and Northing (𝑦).

Many different map projections are in use all over the world for different applications and
for good reasons. Having many different types of map projections and grid coordinates, may
sometimes also result in confusion about what coordinates are actually used or given. Some
software packages may support many of these map projections, but it is virtually impossi
ble to support them all. Other software packages are specifically written for one specialized
map projection, and give incorrect results when using coordinates from a different type of
projection.

283
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Cylindrical Conic Azimuthal

Figure 30.1: Cylindrical, conic and azimuthal map projection types. Image of cylindrical, conic and azimuthal map
projection, by Traroth, March 2005, taken from Wikimedia Commons [9], under CC BYSA 3.0 license.

30.2. Map projection types and properties
The properties of a map projection depend mainly on the type and position of the projection
surface and the projection origin that is used.

30.2.1. Projection surface
Map projections can be grouped into four groups depending on the nature of the projection
surface, see Figure 30.1,

Cylindrical map projections The projection surface is a cylinder wrapped around the Earth.
Cylindrical projections are easily recognized for its shape: maps are rectangular and
meridians and parallels are straight lines crossing at right angles. A well known cylindrical
map projection is the Mercator projection. Figure 29.9 (right part) of the previous chapter
is a Mercator projection.

Conic map projections The projection surface is a cone wrapped around the Earth. Par
allels become arcs of concentric circles. Meridians, on the other hand, converge to
the North or South. Often used for regions of large EastWest extent. An example is
Figure 29.8 of the previous chapter.

Azimuthal map projections The projection surface is a plane tangent to the Earth. Two
well known examples are the stereographic projection, which is used for instance by the
Dutch RD system, see Chapter 35, and the orthographic azimuthal projection used in
Figure 29.7 of the previous chapter.

Miscellaneous projections Mostly used for cartographic purposes.

Any projection can be applied in the normal, transverse and oblique position of the cylinder,
cone or tangent plane, as shown in Figure 30.2 for a cylinder. In the normal case the axis of
projection, the axis of the cylinder and cone, or normal to the plane, coincides with the minor
axis of the ellipsoid.

An example of a cylindrical map projection is the Mercator projection, with the equator as
the line of contact of the cylinder, see Section 30.4.2 and Figure 29.9. In the transverse case
the axis of projection is in the equatorial plane (orthogonal to the minor axis), for example,
in the Universal Transverse Mercator (UTM) projection small strips are mapped on a cylinder
wrapped around the poles and with a specific meridian as line of contact. In the oblique case
the axis of projection does not coincide with the semiminor axis or equatorial plane.

https://commons.wikimedia.org/wiki/File:Projection_cylindrique.jpg
https://commons.wikimedia.org/wiki/File:Projection_conique.jpg
https://commons.wikimedia.org/wiki/File:Projection_azimutale_stereographique.jpg
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Figure 30.2: Normal, transverse and oblique projection for a cylinder. Image on cylindrical projection aspects by
Peter Mercator, own work, November 2009, taken from Wikimedia Commons [9]. Public Domain.

30.2.2. Projection origin
Map projections also differ in the point of perspective that is used. Figure 30.3 shows three
common choices for azimuthal projections. For instance, the point of perspective for the az
imuthal stereographic projection is a point on the Earth opposite to the tangent plane, as is
depicted in Figure 30.1 on the right. On the other hand, for the orthographic azimuthal projec
tion, which was used for Figure 29.7 and in Figure 29.9 (left part), the point of perspective is
at infinite distance. The orthographic azimuthal projection depicts a hemisphere of the globe
as it appears from outer space, which results in shapes and areas distorted particularly near
the edges. In Figure 30.3 the mapping plane is tangent to the sphere. If the mapping plane
is shifted slightly into the sphere, the map projection is called secant.

30.2.3. Properties
Some distortion in the geometrical elements, distance, angles and area, is inevitable in map
projections through transformation Eq. (30.1). In this respect map projections are divided
into

Conformal projections preserve the angle of intersection of any two curves.

Equal Area (equivalent) projections preserve the area or scale.

Equi Distance (conventional) projections preserve distances.

Map projections may have one or two of these properties, but never all three together. In
geodesy conformal mappings are preferred. A conformal mapping may be considered a simi
larity transformation (see Section 27.2) in an infinitesimally small region. A conformal mapping

Figure 30.3: Crosssection of azimuthal map projection, the mapping surface being a flat plane, with central point
of projection, socalled gnomonic (left), stereographic projection (middle), and orthographic projection (right).

https://commons.wikimedia.org/wiki/File:Cylindrical_Projection_aspects.svg
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differs only from a similarity transformation in the plane in that its scale is not constant but
varying over the area to be mapped. For cartographic purposes, e.g. employing geostatistics,
equal area mappings may be better suited.

In some projections an intermediate sphere is introduced. These are called double projec
tions; the first step is a conformal mapping onto a sphere, the second step is the subsequent
projection from the sphere onto a plane. This is also the basis for the Dutch map projection:
the first step is a conformal Gauss projection from the Bessel (1841) ellipsoid on the sphere,
the second step a stereographic projection onto a plane tangential to the ellipsoid with the
center at Amersfoort, see also Figure 35.2.

In order to specify a map projection the following information is required

• name of the map projection or EPSG dataset coordinate operation method code (see
Section 31.4)

• latitude of natural origin or standard parallel (𝜑0) for cylindrical and azimuthal projec
tions, or, the latitude of first standard parallel (𝜑1) and second standard parallel (𝜑2) for
conic projections

• longitude of natural origin (the central meridian) (𝜆0)

• optional scale factor at natural origin (on the central meridian)

• false Easting and Northing

The false Easting and Northing are used to offset the planar coordinates (𝑥, 𝑦) in order to
prevent negative values.

30.3. Practical aspects of map projections
Working with planar grid coordinates to compute distances, angles and areas is much more
convenient than using geographical coordinates. However, one should be aware that in the
map projection small distortions are introduced. For example, an azimuth computed from grid
coordinates may not be referring to true North because of meridian convergence in azimuthal
and conic projections. Meridian convergence is defined as the angle meridians make with
respect to the grid yaxis. Also, sometimes corrections need to made for distances and surface
areas. These corrections are usually quite small and well known. If they become too large it
may be necessary to reduce the area of the projection, e.g. by defining different zones, each
with a different natural origin or central meridian (or parallel). This approach is for instance
used by the popular Universal Transverse Mercator (UTM) projection, see Section 30.4.5,
which uses between 80∘S and 84∘N latitude 60 zones, each of 6∘ width in longitude, centered
around a central meridian. However, the Netherlands falls in two zones, 31N and 32N, which
is not very convenient and may explain why the UTM projection is not used very often in the
Netherlands except offshore on the North Sea. UTM has also been the projection of choice
for the European Datum 1950 (ED50).

Map projections are usually equations that provide a relationship between latitude and lon
gitude on the one hand, and planar grid coordinates on the other hand. However, sometimes
the transformation to planar coordinates, and vice versa, may be supplemented by tabulated
values in the form of a correction grid to account for local distortions in the planar grid coor
dinates. This is often the case when the planar grid has been based on first order geodetic
networks established in the 19th and early 20th century using triangulations, predating the
more accurate satellite based techniques in use today. These older measurements, although
quite an achievement in their time, typically resulted in long wavelength (>30 km) distortions
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in the first order networks, which were the basis for all other (secondary and lower order)
measurements, and are therefore present in all planar grid coordinates. In order for satellite
data, which are not related to the first order networks, to be transformed into planar grid
coordinates and to used together with already existing data, many national mapping agencies
decided to adopt a conventional correction grid to their planar coordinates. So, if the planar
coordinates are converted into latitude and longitude (to be used together with other satellite
data), the correction grid corrects for distortions in the planar grid coordinates. If, on the
other hand, latitude and longitude is converted to grid coordinates, (conventional) distortions
are reintroduced so that the satellite data, expressed in grid coordinates, matches existing
datasets.

30.4. Cylindrical map projection examples
In this section several examples of cylindrical projections are presented. Cylindrical projections
have been chosen because the mathematics are less complicated than those of other map
projections, and thus serve well to illustrate some principles of map projections. Some of the
cylindrical projections that are discussed are only for illustration, but others, like the Mercator,
Web Mercator and UTM projections, are used (almost) on an every day basis.

With the cylindrical projection the Earth’s surface is projected onto a cylinder tangent to
the equator, as shown in the left part of Figure 30.4. The map projection turns (spherical)
coordinates (𝜑, 𝜆)1 of points on the Earth’s surface into map or grid coordinates (𝑥, 𝑦). The
map origin (𝑥 = 0, 𝑦 = 0) is at the intersection of the equator and the Greenwich meridan
(𝜑 = 0, 𝜆 = 0). The Earth’s surface is approximated by a sphere with radius 𝑅. The middle
part of Figure 30.4 shows a top view of the equatorial plane. If we express 𝜆 in radians, the
distance from (𝜑 = 0, 𝜆 = 0) along the equator to an object at longitude 𝜆 equals 𝑅𝜆 , hence
we simply have: 𝑥 = 𝑅𝜆 for all normal cylindrical projections. This is a property of all normal
cylindrical projections: points on the same meridian have a constant 𝑥 value.

The function 𝑦 = 𝑦(𝜑) to project latitude 𝜑 onto 𝑦 values is still open, it can be any one
from an unlimited number of functions. In Figure 30.4, on the right, one such function is
illustrated: the central cylindrical projection.

30.4.1. Central cylindrical projection
In case of the central cylindrical projection points on the Earth are projected, from the origin
at the middle of the Earth, onto a cylinder tangential to the Earth at the equator. The right
part of Figure 30.4 shows a meridianal cross section of the Earth at longitude 𝜆. The object
point, projected onto the cylinder, has a distance 𝑅 tan𝜑 from the equator, hence we have:
𝑦 = 𝑅 tan𝜑. The mapprojection equations for the central cylindrical projection are thus

𝑥 = 𝜇𝑅(𝜆 − 𝜆0)
𝑦 = 𝜇𝑅 tan𝜑 (30.2)

with 𝜇 a scaling factor and 𝜆0 the central meridial (e.g. Greenwhich meridian with 𝜆0 = 0),
with 𝜆 and 𝜆0 expressed in radians.

The true scale on the equator is unity for 𝜇 = 1. Everywhere else the linear scale is
stretched by a factor of 1/ cos𝜑 in the 𝑥axis direction, and 1/ tan𝜑 in the 𝑦axis direction.

The central cylindrical projection is neither conformal or equal area. Distortion increases
so rapidly away from the equator, see Figure 30.5, that the central cylindrical is seldomly used
1The notation used here is the one for geographical coordinates. The distortions that are inherent to this projection
make that the use of spherical or geographic coordinates does not matter for a graphical representation. However,
formally, geographic coordinates should first be projected onto spherical coordinates, before the map projection
is applied.
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Figure 30.4: For the cylindrical projection, the mapping plane is wrapped around the Earth like a cylinder (left),
longitude 𝜆 turns into mapcoordinate 𝑥 (middle; horizontal crosssection of equator plane), and latitude 𝜑 turns
into mapcoordinate 𝑦 (right; vertical crosssection).

for practical maps. Its vertical, latitudinal, stretching is even greater than that of the Mercator
projection, which we discuss next.

30.4.2. Mercator projection
The Mercator projection is a cylindrical map projection, presented by the Flemish geographer
and cartographer Gerardus Mercator, in 1569, see also Figure 37.9. It became the standard
map projection for nautical navigation, as a line of constant course, known as rhumb line,
see the redline in Figure 29.9, is shown as a straight line, that conserves the angle with the
meridians.

As in all cylindrical projections, parallels and meridians are straight and perpendicular to
each other. The Mercator mapprojection is a conformal map projection, meaning that angle
between any two straight lines or curves is preserved. To this end the EastWest stretching
of the map (to ‘undo’ the meridianconvergence), which increases as distance away from the
equator increases, is accompanied by a corresponding NorthSouth stretching. The distance
between the parallels gets larger and larger, the further one gets away from the equator, like in
any cylindrical projection, but the amount by which is chosen carefully as to preserve angles.

As the radius of a parallel, or circle of latitude, is 𝑅 cos𝜑, the corresponding parallel on
the map, a line with with a constant 𝑦 coordinates has been stretched by a factor of 1/ cos𝜑
in the 𝑥coordinate direction. To preserve angles the same amount of stretching needs to be
applied in the 𝑦coordinate direction. This implies that the derivative of the mapcoordinates
function 𝑦(𝜑) must be 𝑦′(𝜑) = 𝑅/ cos𝜑2. Integrating this equation gives

𝑦(𝜑) = 𝑅 ln [tan(𝜋4 +
𝜑
2 )] (30.3)

This function is illustrated in Figure 30.5. The map projection formulas for a basic normal
Mercator projection are thus

𝑥 = 𝜇𝑅(𝜆 − 𝜆0)
𝑦 = 𝜇𝑅 ln [tan(𝜋4 +

𝜑
2 )]

(30.4)

with 𝜇 a scaling factor, 𝜆0 the central meridian. The angular units are radians. The true scale
on the equator is unity for 𝜇 = 1. Everywhere else the linear scale is stretched by a factor
2the derivative for the central cylindrical projection is: 𝑦′(𝜑) = 𝑅/ cos2𝜑
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Figure 30.5: Mapping function 𝑦 = 𝑦(𝜑) for the central cylindrical, Mercator and equirectangular (Plate Carrée)
projections (showing (part of) Europe, Russia, the Middle East and Africa). The function 𝑦(𝜑) with, 𝑅 = 1, is the
black line. The xaxis is 𝜑 in degrees, the yaxis on the left of each plot gives the mapcoordinate 𝑦 = 𝑦(𝜑), the
yaxis on the right of each plot gives the latitude (in degrees) that corresponds to 𝑦(𝜑). The blue lines are coast
lines for part of the Earth plotted with the function 𝑦(𝜑) on the yaxis, with longitude (in degrees) on the xaxis.

of 1/ cos𝜑. This distorts the size of geographical objects far from the equator; objects like
Greenland and Antarctica appear to be much larger than they in reality are, see Figure 29.9,
and also Figure 30.5. The Mercator projection is conformal, it preserves angles, but it is
definitely not an equal area projection. By choosing a value of 𝜇 slightly smaller than one
(effectively decreasing the radius of the cylinder) we can create a Mercator projection with
the unity scale for two parallels, but this does not solve the problem of distortions. At higher
latitude the Mercator projection becomes unusable, and even becomes singular at the poles
(the North and South pole become lines at 𝑦 = ∞).

In the previous equations it was assumed that the Earth was modelled by a sphere, or,
more precisely, we should have used sperical coordinates (𝜆, 𝜓) instead of geographical coor
dinates (𝜆, 𝜑). To use geographic coordinates instead of sperical coordinates is only a minor
approximation for global small scale maps.

When the Earth is modelled by an ellipsoid, with (𝜆, 𝜑) is the geographic longitude and
latitude, the Mercator projection must be modified to remain conformal. The map projection
formula in case of the ellipsoidal model are

𝑥 = 𝜇𝑅(𝜆 − 𝜆0)

𝑦 = 𝜇𝑅 ln [tan(𝜋4 +
𝜑
2 ) (

1−𝑒 sin𝜑
1+𝑒 sin𝜑)

𝑒
2 ] (30.5)

with 𝑒 the eccentricity of the ellipsoid and all angles expressed in radians.

30.4.3. Plate carrée and equirectangular projections
A simple longitudelatitude presentation is obtained when the 𝑥 and 𝑦coordinates are scaled
by 𝑅 in the same way. This is called the plate carrée projection. The mapprojection equations
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for this simple cylindrical mapprojection are

𝑥 = 𝑅(𝜆 − 𝜆0)
𝑦 = 𝑅𝜑 (30.6)

with angles expressed in radians. The parallels and meridians are being equidistant in the
map and form a square grid3, as can be seen in Figure 30.5. The scale in the latitude (NS)
direction is uniform, at least for a spherical Earth. However, the scale for the longitude (E
W) direction is not uniform and decreases with the latitude. The plate carrée projection is a
special case of the equirectangular projection.

The map projection equations for the equirectangular projection, with standard parallels
at 𝜑1 North and South of the equator, are

𝑥 = 𝑅(𝜆 − 𝜆0) cos𝜑1
𝑦 = 𝑅(𝜑 − 𝜑1)

(30.7)

with angles in radians. The projection maps meridians to vertical straight lines of constant
spacing, and circles of latitude to horizontal straight lines of constant spacing, to form a rect
angular grid. The scale of the projection is true at both standard parallels 𝜑1. The projection
is neither equal area nor conformal.

Because of the distortions introduced by this projection it has little use in navigation or
cadastral mapping. However, it is an easy to use projection for mapping small areas, and it
does a much better job than simply plotting longitude and latitude values in an xyplot, what
the Plate Carré projection basically does.

30.4.4. Web Mercator
The Web Mercator projection is a variant of the Mercator projection that is used by many
Web mapping applications, including Google Maps, Bing Maps, OpenStreetMap and others. It
uses the same spherical formulas of Eq. (30.4) as the standard Mercator, however, the Web
Mercator uses the spherical formulas with the geographical coordinates (𝜆, 𝜑) in the WGS84
ellipsoidal datum. The discrepancy is imperceptible at the global scale, but causes maps of
local areas to deviate slightly from true ellipsoidal Mercator maps. This discrepancy also causes
the projection to be slightly nonconformal. For these reasons, several agencies have declared
this map projection to be unacceptable for any official use.

30.4.5. Universal Transverse Mercator (UTM)
The normal Mercator projection works quite well in a small band around the equator, but
performs very poorly at higher latitudes. Switching from a normal projection, to a transverse
projection, as in Figure 30.2, results in a projection that works quite well in a small band around
the central meridian. This approach is used by the popular Universal Transverse Mercator
(UTM) projection for latitudes between 80∘S and 84∘N. The UTM projection uses 60 zones,
each of 6∘ width in longitude (up to 668 km), centered around a central meridian. Each zone
is numbered. For instance, the Netherlands falls in two zones, 31N and 32N. Zone 31N covers
longitude 0∘ to 6∘E, zone 32N covers longitude 6∘E to 12∘E.

The scale factor along the central meridian is not 1, but 0.9996, so that the inevitable
distortion is spread more uniformly over the zone. The amount of distortion is less than
1/1000 .

In each zone the scale factor of the central meridian reduces the diameter of the transverse
cylinder to produce a secant projection with two standard lines, or lines of true scale, about
3with the default Mercator projection the parallels get further and further apart the more you go to the North
(South), and with the central cylindrical projection this will be even more the case
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180 km on each side of, and about parallel to, the central meridian (arccos 0.9996 = 1.62∘
at the equator). The scale is less than unity inside the standard lines and greater than unity
outside them, but the overall distortion is minimized

The polar regions South of 80∘S and North of 84∘N are excluded.

30.5. Exercises and worked examples
This section presents two simple exercises on projecting the Earth’s surface on a plane.

Question 1 We do have a geographic database available, with position coordinates in a
threedimensional Cartesian Earth Centered, Earth Fixed (ECEF) reference system. We would
like to create a map of the Northern hemisphere, using an orthographic azimuthal projection
(with the mapping plane being parallel with the equatorial plane, and lying/touching the North
pole). Set up the 3by3 projection matrix to perform the mapping operation on the three
dimensional coordinates in the database.

Answer 1 The mapping plane is 𝑍 = 𝑏, with 𝑏 the semiminor axis of the ellipsoid (or the
radius of the sphere). Next, orthographic means that the projection lines are all perpendicular
to the mapping plane, and in this case parallel to the Zaxis. Hence the projection matrix is

𝑃 = (
1 0 0
0 1 0
0 0 0

),

and the Z coordinate is eventually to be translated to 𝑍 = 𝑏. So mapping, or grid coordinates
(𝑥, 𝑦) become 𝑥 = 𝑋 and 𝑦 = 𝑌. This is shown in Figure 30.6. Eventually you may want to
apply a scale factor 𝜇, so that 𝑥 = 𝜇𝑋 and 𝑦 = 𝜇𝑌.

Figure 30.6: Orthographic azimuthal map projection (Answer 1). The point of tangency of the mapping plane is
the North Pole.

Question 2 The left part of Figure 30.7 shows an orthographic azimuthal map projection,
where the point of tangency of the mapping plane is set to the middle of The Netherlands,
close to Amersfoort, indicated by A. This map projection does not preserve distances. The
Netherlands in WestEast direction is about 160 km wide, so over the Earth’s surface the
distance fromW to A is 80 km, and identically from A to E. By how much is distance WE shorter
on the map? You can assume that the Earth is a perfect sphere, with radius 𝑅=6378 km.

Answer 2 The distance WE over the Earth’s surface equals 2𝑠 as shown in the right part
of Figure 30.7. The distance WE on the map equals 2𝑑. Angle 𝛼, in radians, is easily found
as 𝛼 = 𝑠

𝑅 , see Figure 30.7. We also have sin𝛼 =
𝑑
𝑅 , and we can use the first two terms of

the Taylor series of the sine, which provides a good approximation for small angles, as in this
case. Hence, with sin 𝑥 ≈ 𝑥 − 𝑥3

3! , we have
𝑠
𝑅 −

𝑠3
3!𝑅3 ≈

𝑑
𝑅 , and 𝑠 −𝑑 ≈

𝑠3
6𝑅2 . With 𝑠=80 km and

𝑅=6378 km, we arrive at 𝑠 − 𝑑 ≈ 2.1 m, hence, in the map the Netherlands have shrunk by
4.2 m.
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Figure 30.7: Orthographic azimuthal map projection (left) for Question 2, and the method for determining distance
𝑑 for given distance 𝑠 over the Earth’s surface (right) used in the answer.



31
Datum transformations and

coordinate conversions

In practice geospatial projects often involve coordinates of Earth’s surface topography and
objects from different sources, each using their own coordinates representation and reference
system. In order to establish the correct spatial relationships, first the coordinates have to be
transformed into the same reference system and representation. Transformations between
reference systems are called geodetic datum transformations. In this chapter we discuss
geodetic datum transformations and coordinate conversions.

31.1. Geodetic datum
In previous chapters several types of spatial coordinate systems and representations have been
introduced, such as Cartesian coordinates, geographic coordinates and grid (map) coordinates,
including operations that can be performed on them. But, somehow, spatial coordinates
need to be linked to the Earth. For instance, take the example of Cartesian and ellipsoidal
coordinates first. For 3D Cartesian coordinates we need to define seven parameters: three
for the origin, three for the orientation of the axes, and one for scale (see Section 28.4). For
ellipsoidal coordinates, i.e. geographic latitude, longitude and ellipsoidal height, we need to
define first the shape of the ellipsoid, i.e. the length of the semimajor axis and flattening (or
the length of the semiminor axis or inverse flattening) of the chosen ellipsoid (2 parameters),
and secondly the position of the ellipsoid with respect to the Earth, i.e. origin, orientation and
scale of the ellipsoid (7 parameters). These definitions constitute the geodetic datum.

The whole of the coordinate system, the geodetic datum, the type of coordinates that
are used, and their parameters, is what defines a spatial coordinate system, or a coordinate
reference system (CRS).

When countries developed their national coordinate systems at the end of the 19th and
beginning of the 20th century, each country chose an ellipsoid of revolution that best fitted
their country based on astronomical observations. This resulted not only in different choices
for the shape of the ellipsoid, but also in different positions of the ellipsoid with respect to the
Earth. Table 31.1 gives the parameters for three commonly used ellipsoids in the Netherlands.
Because of the limited accuracy of astronomical observations at the time, the position of the
ellipsoids also differs.

Therefore, each spatial coordinate system, or coordinate reference system, has a geodetic
datum. The geodetic datum, or datum for short, specifies how a coordinate system is linked
to the Earth: it consists of parameters that describe how to define the origin of the coordinate

293
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ellipsoid 𝑎 [m] 1/𝑓 [] 𝐺𝑀 [𝑚3/𝑠2]

Bessel (1841) 6 377 397.155 299.152 812 8
GRS80 6 378 137 298.257 222 100... 3 986 005 108
WGS84 6 378 137 298.257 223 563 3 986 004.418 108

Table 31.1: Common ellipsoids, with semimajor axis 𝑎, inverse flattening 1/𝑓, and if available, associated value
for 𝐺𝑀. The full list of ellipsoids is much longer. The very small difference in the flattening between WGS84 and
GRS80 results in very tiny differences of at most 0.105 mm and can be neglected for all practical purposes.

axes, how to orient the axes, and how scale is defined. However, this can only be done in
a relative sense, using a geodetic datum transformation to link one reference system to the
other. The parameters that are involved, usually origin, orientation and scale changes, are the
socalled geodetic datum transformation parameters.

31.2. Coordinate operations
It is common that spatial reference systems rely on different geodetic datums, reference
ellipsoids and map projections. Therefore, coordinate transformations between two different
systems not only involve a 7parameter similarity transformation, the datum transformation,
but often also a change in the reference ellipsoid, type of map projection and projection
parameters. Two types of coordinate operations have to be distinguished

datum transformation This changes the datum of the reference system, i.e. how the co
ordinate axes are defined and how the coordinate system is linked to the Earth. Datum
transformations typically involve a 7parameter similarity transformation between Carte
sian 3D coordinates.

coordinate conversions These are conversions from Cartesian into geographical coordi
nates, geographical coordinates into grid (map) coordinates, geocentric Cartesian into
topocentric, geographic into topocentric, etc., and vice versa. These are operations that
operate on coordinates from the same datum. In general, one type of coordinates can
be converted into another, without introducing errors or loss of information, as long as
no change of datum is involved.

A diagram showing the relations between datum transformations and coordinate conversions
is presented in Figure 31.1.

Datum transformations are transformations between coordinates of two different reference
systems. Usually this is a 7parameter similarity transformation between Cartesian coordinates
of both systems, as shown in Figure 31.1, but if a dynamic Earth is considered with moving
tectonic plates and stations, the similarity transformation can be time dependent (with 14
instead of 7 parameters). Affine or polynomial transformations between geographic or grid
coordinates of both systems are also possible, but not shown in Figure 31.1. These affine or
polynomial transformations are mostly coarse approximations.

Coordinate conversions depend only on the chosen parameters for the reference ellipsoid,
such as the semimajor axis 𝑎 and flattening 𝑓, and the chosen map projection and projec
tion parameters. Once these are selected and remain unchanged coordinate conversions are
unambiguous and without loss of precision.

The conversion from 3D coordinates to 2D grid (map) or geographic coordinates in Fig
ure 31.1 is very straightforward: this is accomplished by simply dropping the height coordinate.
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Figure 31.1: Coordinate conversions and datum transformations. Horizontal operations represent coordinate
conversions. The vertical operations are datum transformations from system A to B. Not shown in this diagram
are polynomial transformations (approximations) directly between map coordinates or geographic coordinates of
the two systems.

The reverse, from 2D to 3D, is indeterminate. This is an issue when 2D coordinates (geo
graphic or grid coordinates) have to be transformed into another datum or reference system,
as this involves 3D Cartesian coordinates. However, in practice this issue is resolved easily by
creating an artificial ellipsoidal height ℎ, for instance by setting the ellipsoidal height ℎ = 0.
The resulting height in the new system will of course be meaningless, and has to be dropped,
but as long as the chosen ellipsoidal height is within a few km of the actual height the error
induced in the horizontal positions will be small.

A big difference between datum transformations and coordinate conversions is that the
parameters for the datum transformation are often empirically determined and thus subject
to measurement errors, whereas coordinate conversions are fully deterministic. More specific,
three possibilities need to be distinguished for the datum transformation parameters

1. The first possibility is that the datum transformation parameters are conventional. This
means they are chosen and therefore not stochastic. The datum transformation is then
just some sort of coordinate conversion (which is also not stochastic).

2. The second possibility is that the datum transformation parameters are given, but have
been derived by a third party through measurements. What often happens is that this
third party does new measurements and updates the transformation parameters occa
sionally or at regular intervals. This is also related to the concepts of reference system
and reference frames. Reference frames are considered (different) realizations of the
same reference system, with different numerical values assigned to the coordinates of
the points in the reference frame, and often with different realizations of the transforma
tion parameters. The station coordinates and transformation parameters are stochastic,
so new measurements, mean new estimates that are different from previous estimates.
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Figure 31.2: At left a coordinate system, which is purely a mathematical concept. In the middle a reference
ellipsoid and parameters have been defined to model the Earth, and together with the coordinate system, this
forms a reference system. A reference system is a theoretical concept, which is still to be connected to physical
Earth. A reference system is only realized in practice once numerical coordinate values are assigned to physical
points and objects on Earth; this realization is called a reference frame, shown at right. The origin, orientation
and scale of the coordinate system is referred to as geodetic datum. The geodetic datum definition is part of a
reference system, but its realization is only through a reference frame. A reference system and its realization in a
reference frame are together referred to as a coordinate reference system (CRS) in practice.

3. The third possibility is that there is no third party that has determined the transformation
parameters, and you as a user, have to estimate them using at least three common points
in both systems. In this case you will need coordinates from the other reference system.
Keep in mind that the coordinates from the external reference system should all come
from the same realization, or, reference frame.

An illustration and summary of the most important terminology in this chapter so far, are
given in Figure 31.2.

31.3. A brief history of geodetic datums [*]
Many different datums and reference ellipsoids have been used in the history of geodesy. At
the end of the 19th and beginning of the 20th century many countries developed their own
national coordinate system, choosing an ellipsoid of revolution that best fitted the area of
interest. In this presatellite era this meant doing astronomical observations to determine the
origin and orientation of the ellipsoid. This resulted in many different ellipsoids and datums.
In the 1950’s the USA initiated work on ED50 (European Datum 1950) which had as goal to
link the various European datums and create a European reference system primarily for NATO
applications. ED50 became also popular for offshore work and to define the European borders.
The satellite era saw the development of a number of worldwide reference systems, such
as WGS60 and WGS72 which were based on Transit/Doppler measurements, with the most
recent version WGS84 based on GPS in 1987. Later the International Terrestrial Reference
Frame (ITRF) and the European Terrestrial Reference System ETRS89 were established which
are more accurate than WGS84. These global reference frames also made it possible for the
first time to determine accurate datum transformation parameters for the national reference
frames that were established in the 19th and early 20th century.

With the advent of GPS and other space geodetic techniques the newer reference ellipsoids
and datums are all very well aligned to the center of mass and rotation axis of the Earth.
These geocentric reference ellipsoids are usually within 100 m of the geoid worldwide. In pre
satellite days the reference ellipsoids were devised to give a good fit to the geoid only over the
limited area of a survey, and it is therefore no surprise that there are significant differences
in shape and orientation between the older and newer ellipsoids, resulting in large datum
transformation parameters for the old systems. This also means that there are significant
differences between latitude and longitude defined on one of the older legacy ellipsoids with
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respect to the satellite based datums. Confusing datums of the latitude and longitude may
result in significant positioning errors and could result in very hazardous situations.

It is therefore very important with coordinates (does not matter whether they are Cartesian,
geographic or grid coordinates) to always specify the reference system and reference frame
they belong to. Also, for measurements on a dynamic Earth, it is important to document the
measurement epoch. The reference system and reference frame of the coordinates, and the
measurement epoch, are very important metadata for coordinates which should never be
omitted. Failure to record or provide this important metadata will almost always result in
confusion, result in unnecessary costs and in worst case a disaster happening.

31.4. EPSG dataset and WKTCRS
The International Association of Oil & Gas Producers (OGP) maintains a geodetic parameter
dataset of common coordinate conversions, datum transformations and map projections. This
is known as the EPSG dataset (EPSG stands for European Petroleum Survey Group), whereby
each coordinate operation or transformation is identified by a unique number. In the EPSG
dataset codes are assigned to coordinate reference systems, coordinate transformations, and
their component entities (datums, projections, etc.). Within each entity type, every record
has a unique code [74]. For instance, the EPSG code for the Dutch RD coordinate system
is EPSG:28992 (Amersfoort / RD New  Netherlands). The EPSG website also provides the
equations for the various mappings that have been stored in the EPSG database [75]. The
EPSG database, although extremely useful, has no official status, and sometimes contains only
approximate parameters.

Another format to describe spatial reference systems is the WellKnown Text representation
(WKT or WKTCRS). This is a text markup language for representing spatial reference systems
and transformations between spatial reference systems. The formats were originally defined
by the Open Geospatial Consortium (OGC) and is an ISO standard. For example, the WKT
below describes a twodimensional geographic coordinate reference system with a latitude
axis first, then a longitude axis. The coordinate system is related to Earth by the WGS84
geodetic datum (example taken from Wikipedia under CC BYSA license [76]).

GEODCRS[”WGS 84”,
DATUM[”World Geodetic System 1984”,

ELLIPSOID[”WGS 84”, 6378137, 298.257223563, LENGTHUNIT[”metre”, 1]]],
CS[ellipsoidal, 2],

AXIS[”Latitude (lat)”, north, ORDER[1]],
AXIS[”Longitude (lon)”, east, ORDER[2]],
ANGLEUNIT[”degree”, 0.0174532925199433]]

The WKT format can also be used to describe the operation methods and parameters to
convert or transform coordinates between two different coordinate reference systems (see
next section).

31.5. Coordinate conversion and transformation software [*]
Software for map projections, coordinate conversions and datum transformations is provided
for instance by the open source PROJ package [77] used by several Geographic Information
System (GIS) packages (e.g. the open source QGIS package). PROJ started purely as a car
tography application, but over the years support for datum shifts and more precise coordinate
transformations were added to PROJ. In their own words: ‘Today PROJ supports more than a
hundred different map projections and can transform coordinates between datums using all
but the most obscure geodetic techniques’.

http://www.epsg.org
http://www.epsg.org
https://epsg.io/28992
http://www.epsg.org
https://en.wikipedia.org/wiki/Well-known_text_representation_of_coordinate_reference_systems
https://proj.org/
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PROJ includes command line applications for conversion of coordinates from text files or
user input, and an application programming interface. Coordinate transformations are defined
by string that holds the parameters of a given coordinate transformation, e.g. the example
string +proj=merc +lat_ts=56.5 +ellps=GRS80 specifies a Mercator projection with
the latitude of true scale at 56.5∘N on the GRS80 ellipsoid. The command proj +proj ...
converts the geographic (geodetic) coordinates, read from standard input, to map coordinates.
This program is limited to converting within one datum. The cs2cs command line utility is
used to transform from one coordinate reference system to another, using two +proj strings
to specify the source and destination system. The cct program is a 4D equivalent to the
proj and cs2cs programs to perform coordinate conversion and transformation that include
time.

Besides PROJ strings, PROJ can also use WellKnown Text (WKT) and as spatial reference
ID’s (such as EPSG codes) to describe the coordinate reference system. WKT or spatial refer
ence ID’s are preferred over PROJ strings as they can contain more information about a given
CRS. If you know the EPSG identifiers these can be used to specify the source and destina
tion CRS in cs2cs. E.g. cs2cs +init=epsg:4326 +to +init=epsg:28992 ... will
transform geodetic coordinates in the WGS84 reference frame to RD coordinates. Though
PROJ supports the Dutch RD coordinate system, through the EPSG code EPSG:28992, users
should nevertheless be extremely careful. For this particular example you probably do not
have coordinates in WGS84, but in one of the ITRF’s or in ETRS89 (see e.g. Section 14.4 and
Chapter 34), each with its own EPSG code. Another concern is that the EPSG database is
actively maintained, and your local version may not be fully up to date, or the grid correction
file may be missing. For visualizations on a map or GIS system these details do not matter,
but they do matter for when an accuracy better than 1 meter is required.

In Chapter 35 we will come back to the matter of transforming coordinates into the Dutch
RD system and heights into the NAP system using the RDNAPTRANS™procedure. The latest
version of RDNAPTRANS™, called RDNAPTRANS™2018, is fully implemented in PROJ using a
pipeline of +proj strings.

31.6. Exercises and worked examples
This section presents just a quick exercise on comparing the semimajor axes of two ellipsoids.

Question 1 Compute the difference in semimajor axis length between the WGS84 ellip
soid and the Bessel (1841) ellipsoid.

Answer 1 The length of the semimajor axis of theWGS84 ellipsoid is 𝑎WGS84 = 6378137m,
and of the Bessel (1841) ellipsoid 𝑎Bessel = 6377397.155 m (see Table 31.1). Hence, the dif
ference is 739.845 m. That is a nearly a kilometer difference at the equator!



32
Gravity and gravity potential

In this chapter we introduce, as a preparation for the next chapter, on vertical reference
systems, the concepts of gravity and gravity potential. These concepts are first illustrated by
means of the very simple example of the Earth being a perfect sphere, and initially restricting
the discussion to gravitation. Eventually we introduce the geoid and the socalled deflection
of the vertical.

32.1. Introduction
Gravitation, the main force experienced on Earth, causes (free) objects to change their posi
tions, as to decrease their potential. According to the first two laws by Newton, see e.g. [52],
the force prescribes the acceleration of the object, and this acceleration is the second time
derivative of the position. And when there is no resulting force acting on an object, it is not
subject to any acceleration and the object will either remain in rest, or be in uniform motion
(constant velocity) along a straight line.

The two basic elements of Newtonian mechanics are mass and force. As introduced with
Table H.1, mass is an intrinsic property of an object that measures its resistance to acceleration.

In an inertial coordinate system, Newton’s second law states that the (net external) force
(vector) 𝐅 equals mass 𝑚 times acceleration (vector) �̈�

𝐅 = 𝑚�̈� (32.1)

The acceleration vector �̈� is the second derivative with respect to time of the position co
ordinates vector 𝐫. The unit of the derived quantity force is is Newton [N] and equals [kg
m/s2].

32.2. Earth’s gravitational field
The Earth’s gravitational field, represented by acceleration vector 𝐠 (with direction and mag
nitude), varies with location on Earth, as well as above the Earth’s surface. This acceleration
vector has special symbol 𝐠, instead of the general 𝐚 or �̈�. Acceleration has unit [m/s2].

Weight is defined as the force of gravitation on an object. Its magnitude is (also) not a
constant value over the Earth or above it. If the force of gravitation is the only one force
acting on an object, the object is said to be in free fall with acceleration 𝑔 = ‖𝐠‖ and its
apparent weight is zero. A satellite orbiting the Earth is (in the ideal situation) in free fall;
the acceleration vector 𝐠 is directed towards the center of Earth, and causes the satellite to
maintain a circular orbit. An object located extremely far from the Earth (and any other body)
would be truely weightless (but still have the same mass).
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Figure 32.1: The (size of) acceleration −𝑔 (left) and the potential𝑊 (right) both approach zero as radial distance 𝑟
goes to infinity. A radial distance of zero corresponds to the Earth’s center. The curves start at the Earth’s surface
(the thin vertical line at 𝑟=6378 km). The dashed line indicates the radial distance of the orbit of a GPS satellite;
there the acceleration (across track) is less than 1 m/s2, at a speed of almost 4 km/s. The negative sign for the
acceleration, −𝑔, is used to match the radial direction for an object in free fall.

The magnitude of weight is given by a spring scale. The spring is designed to balance the
force of gravitation. The spring scale converts force (in [N]) into mass (in [kg]) on the display
by assuming a magnitude of 𝑔 equal to 9.81 m/s2, (approximately everywhere) on and near
the Earth’s surface.

For an ideal spherical(ly layered) Earth (or when all of its mass were concentrated at its
center), the gravitational force exerted on an object with mass 𝑚 a distance 𝑟 away, is given
by

𝐅 = −𝐺𝑀𝑚𝑟2
𝐫
𝑟 (32.2)

where 𝐺 is the universal gravitational constant (𝐺 = 6.6726 ⋅ 10−11 Nm2/kg2), 𝑀 the mass of
the Earth (𝑀 ≈ 5.98 ⋅1024 kg), 𝐫/𝑟 the unit direction vector from the Earth’s center toward the
object, and 𝑟 the (radial) distance from the Earth’s center to the object outside the Earth. The
force (vector) 𝐅, exerted by the Earth on the object with mass 𝑚 is directed from the object
toward the Earth’s center.

The gravitational attraction consequently reads

𝐠 = −𝐺𝑀𝑟2
𝐫
𝑟 (32.3)

The force in Eq. (32.2) has been divided by mass 𝑚 to obtain the acceleration in Eq. (32.3),
which consequently could be interpreted as the force per unit mass. The magnitude of the
gravitational acceleration 𝑔 = ‖𝐠‖ in Eq. (32.3) decreases with increasing height above the
Earth’s surface, and reduces to zero at infinite distance, see Figure 32.1 (at left). The accel
eration (vector) 𝐠 also points toward the Earth’s center.

32.3. Gravitational potential
The work done by a force equals the in or dotproduct of the force vector 𝐅 and the displace
ment vector 𝑑𝐬, according to

𝑊 = ∫
𝐵

𝐴
𝐅 ⋅ 𝑑𝐬 (32.4)
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The (tangential component of the) force is integrated along the path travelled by the object
from 𝐴 to 𝐵. Work, a scalar, is expressed in joule [J], the unit of energy, and equals J = Nm.

Taking the force per unit mass in Eq. (32.4), which is actually the acceleration in Eq. (32.3),
and interpreting the work in Eq. (32.4) as a difference in energy Δ𝑊 = 𝑊𝐵 − 𝑊𝐴 after and
before the force carrying the object from 𝐴 to 𝐵, causes 𝑊 in Eq. (32.4) to be the potential
energy per unit mass of the gravitational force, or the potential of gravitation for short. The
word ‘potential’ expresses that energy can be, but not necessarily is, delivered by the force.

With 𝑚 = 1 kg in Eqs. (32.2)) and (32.4), the potential of gravitation becomes

𝑊 = 𝐺𝑀
𝑟 (32.5)

for a pointmass or spherical Earth (we continue with the very simple example of the previous
section and in addition assume here that the Earth is nonrotating and at rest in inertial space).

The above potential is expressed in [Nm/kg], which equals [m2/s2]. The potential is a
function of the radial coordinate 𝑟, and the integration constant has been chosen such that
the potential is zero at infinite distance, see also Figure 32.1 at right. Substituting Eq. (32.5)
in Eq. (32.3), gives the relation between gravitational acceleration and gravitational potential

𝐠 = −𝑊𝑟
𝐫
𝑟 (32.6)

with for the magnitude 𝑔 = ‖𝐠‖ = 𝑊
𝑟 . Also the derivative of the potential of gravitation

(with respect to position) is roughly equal to the gravitational acceleration, i.e. 𝑑𝑊𝑑𝑟 ≃ 𝑔 (for a
homogeneous sphere the relation is exact), in other words, the slope of the curve at right in
Figure 32.1 equals the acceleration shown at left.

From a physics perspective 𝑊 in Eq. (32.5) presents the work done per unit mass. In
physics it is common practice to define the potential energy function (with symbol 𝑈), such
that the work done by a conservative force equals the decrease in the potential energy function
(that is, use an opposite sign, for instance in Eq. (32.5)).

So far we used a (very) simple example of an ideal spherical(ly layered) Earth. In the next
section we consider in addition that the Earth is rotating, and so are objects on its surface. With
an Earthfixed reference, vector 𝐠will be the result of gravitational and centrifugal acceleration,
and is referred to as the acceleration of gravity.

32.4. Gravity and geoid
According to Eq. (32.5), the potential 𝑊 is constant 𝑊 = 𝑊𝑜, when radial distance 𝑟 is con
stant, that is, on spherical surfaces around the Earth, all centered at the middle of the Earth,
for the simple example in the previous section. Surfaces where the gravitational potential 𝑊
is constant are equipotential surfaces, and the gravitation vector 𝐠 is everywhere orthogonal
to them (dictating the local level, according to which geodetic instruments are set up).

This concept is now extended to gravity. The surface of reference in a vertical sense for
physical phenomena on Earth like water flow is the geoid, the gravity equipotential surface at
mean sea level (MSL).

A geoid is shown in Figure 32.2. Obviously, good knowledge of the geoid is crucial for
coastal engineering and construction of canals. On a global scale, the Earth Gravitational
Models (EGMs) are the most commonly used geopotential models of the Earth. They consist
of spherical harmonic coefficients published by the US National GeospatialIntelligence Agency
(NGA) with reference to the GRS80–ellipsoid in ITRS which, for practical purposes is almost
identical to WGS84 [79]. Three versions of EGM are published: EGM84 with degree and

https://earth-info.nga.mil/GandG/update/index.php?dir=wgs84&action=wgs84#tab_egm2008
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Figure 32.2: The height of the geoid with respect to the best fitting Earth ellipsoid (GRS80). The geoid height 𝑁
is defined in Figure 33.1. The colorscale ranges from about 100 m (blue) to +70 m (red). This geoid is based
on GRACE data. Image taken from ESA, October 2004 [78]. Released publicly.

order of harmonic coefficients 180, EGM96 with degree and order 360, and EGM2008 with
degree and order 2160. The higher the degree and order of harmonic coefficient, the more
parameters the models have, and the more precise they are. Also provided by NGA is a
2.5minute worldwide geoid height file, precomputed from the EGM2008. The first EGM,
EGM84, was defined as a part of WGS84, and is still used by many GPS devices to convert
ellipsoidal height into height above mean sealevel. The resolution and precision of global
models is not sufficient for applications on a local scale. Therefore, many countries, including
the Netherlands (see Section 35.3), have computed more precise geoids over a smaller region
of interest.

As an introduction, the (shape of the) Earth and its gravity field have been treated so far as
being (perfectly) spherical, just like in Section 29.1. Reality (and an adequate model thereof)
is much more complicated. As a second approximation the Earth is taken to be a rotational
ellipsoid (oblateness of the Earth) as in Section 29.2, and subsequently the inhomogeneous
distribution of mass within (and on) the Earth, and the presence of heavenly bodies are con
sidered. Hence, the shape of the geoid, in particular departures from being a sphere or an
ellipsoid, is determined by the actual mass distribution of the Earth, the outside surface shape,
and also inside. The shape of the geoid may vary over time, think for instance of mass loss in
polar regions due to ice and snow melt, sealevel rise and groundwater level changes.

The gravity acceleration experienced on Earth in practice (and hence observable) consists
of, first, gravitational acceleration due to the mass of Earth, as discussed before, but also of Sun
and Moon (tidal acceleration) and secondly, centrifugal acceleration due to the Earth’s rotation
(this effect is largest at the equator, and absent at the poles; objects on the Earth’s surface
corotate with the Earth). Two additional contributions are the inertial acceleration of rotation
and the Coriolis acceleration, which is absent if the object (or measurement equipment) is
in rest, or in free fall. Gravity (in Dutch: zwaartekracht), with gravity vector 𝐠, is commonly
defined as the sum of gravitational acceleration and centrifugal acceleration, where in the first
one the part due to the attraction of Sun and Moon is discounted.

32.5. Gravimetry [*]
With leveling, increments (distances) are measured along the (local) direction of gravity. Grav
ity determines the direction of the height system (up and down); the surface perpendicular

https://www.esa.int/ESA_Multimedia/Images/2004/10/The_Earth_s_gravity_field_geoid_as_it_will_be_seen_by_GOCE
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Figure 32.3: The gravity field acceleration vector 𝐠, which is orthogonal to the geoid (in blue) deviates slightly
from the normal to the ellipsoid �̄� (in red). The deviation 𝜉 is called deflection of the vertical.

to the vector of gravity represents points at equal height (no water flow), cf. Figure 3.6, and
may be locally approximated by a tangent plane.

The purpose of gravimetry is to eventually describe the geoid with respect to a chosen
(geometric) reference body, for instance a rotating equipotential ellipsoid. It comes to deter
mination of the geoid height.

The Earth gravitational potential 𝑊 itself (in an absolute sense) can not be observed. In
ferences about the potential have to be made through measurements mainly of the first order
(positional) derivative, that is through the gravity vector 𝐠 of which direction and magnitude
can be observed. The direction of gravity can be observed by astronomical measurements (lat
itude and longitude). The magnitude of gravity can be observed by absolute measurements
(a pendulum or a free falling object), or by relative measurements (with a spring gravimeter).

At the Earth’s surface the magnitude of gravity changes by 3 ⋅ 10−6 m/s2 over a 1 meter
height difference (𝑑𝑔𝑑𝑟 ). This is the slope of the curve in the graph at left in Figure 32.1,

A satellite falling around the Earth can also be looked upon as an accelerometer, as its
orbit is primarily governed by the Earth’s gravitational field.

Gradiometers measure second order (positional) derivatives of the gravitational potential,
for instance in a satellite by two (or more) accelerometers at short distance. They sense the
difference in acceleration (differential accelerometry). A satellite tandem mission, where two
satellites closely go together, has a similar purpose.

Finally it should be noted that the separation made between geometric observables and
physical gravity observables is not a strict one. They are unified in the theory of general
relativity: the path of a light ray for instance (as used for electrooptical measurements of
distance) will bend as it travels through a (strong) gravity field.

32.6. Deflection of the vertical
As shown in Figure 32.3 the gravity field acceleration vector 𝐠 is orthogonal to the geoid (and
to equipotential surfaces in general). The direction of 𝐠 may, and will in practice, deviate
slightly from the normal to the ellipsoid, denoted by the vector �̄� in Figure 29.6. The angle 𝜉
in Figure 32.3 shows the difference between the two, and is referred to as the deflection of
the vertical (in Dutch: schietloodafwijking), see also Eq. (29.14). The deflection of the vertical
has two components, the deflection of the vertical 𝜉 along the meridian, and the deflection of
the vertical 𝜂 along the parallel. Figure 32.3 shows only one component.

In the Netherlands, the deflection of the vertical is very small, in the order of 0.001∘,
or 2 ⋅ 10−5 radian at most (with the GRS80 ellipsoid). In mountainous areas the deflection
of the vertical can be much larger. A surveying instrument, like a total station, is setup
with its vertical axis aligned with the direction of local gravity. Eventually one may want to
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sphere ellipsoid geoid Earth’s surface

< 25 km reference < 150 m < 10 km

Table 32.1: Deviations of different (best fitting) models of the Earth, and also the actual Earth’s surface (topogra
phy), all referenced to the shape of the ellipsoid.

use coordinates for mapping in a local EastNorth horizontal plane, as shown in Figure 29.6,
hence a plane tangent to the ellipsoid, rather than the local plane perpendicular to the gravity
vector. Over small distances the effect will be negligible. In terms of height, the effect, with
the earlier given deflection of the vertical in the Netherlands, will be 2 mm over a distance of
100 m.

32.7. Conclusion
In this chapter we learned that surfaces where the gravity potential𝑊 is constant are equipo
tential surfaces. The gravity vector 𝐠 is everywhere orthogonal to them, dictating the local
level, and hence water flow. The equipotential surface at mean sea level (MSL), the geoid, is
thererfore the ideal surface of reference in a vertical sense.

A rotational ellipsoid (oblateness of the Earth), as in Section 29.2, is a reasonable approx
imation to the Earth’s geoid. This approximation is popular when not specifically dealing with
physical heights and the flow of water. The deviations between the geoid and rotational el
lipsoid are smaller than 150 meters, as shown in Figure 32.2 and Table 32.1. Table 32.1 also
includes the deviation with topography and a spherical approximation of the Earth.

The shape of the geoid, in particular departures from being a sphere or an ellipsoid, is
determined by the actual mass distribution of the Earth. The shape of the geoid may vary
over time, think for instance of mass loss in polar regions due to ice and snow melt, sealevel
rise and groundwater level changes.

32.8. Exercises and worked examples
This section presents a few exercises on gravity acceleration and potential.

Question 1 Compute the magnitude of the acceleration due to attraction by the Earth’s
mass, at the equator, and at a pole, assuming the Earth is a perfect ellipsoid (WGS84), and
all mass is concentrated in the Earth’s center.

Answer 1 The acceleration due to attraction by the Earth is given by Eq. (32.3), which
holds for a spherical Earth with its mass homogeneously distributed, or all mass concen
trated in the Earth’s center. ‖𝑔‖ = 𝐺𝑀

𝑟2 , this is the magnitude of the gravitational acceler
ation at radius 𝑟 away from the Earth’s center. The Earth’s gravitational constant is 𝐺𝑀 =
3986004.418 ⋅ 108m3/s2 (Table 31.1). At the equator the distance to the Earth’s center
equals 𝑎 = 6378137.0 m (Table 31.1, semimajor axis of WGS84 ellipsoid), and at a pole
𝑏 = 6356752.314 m, see Question 3 in Section 29.7. Hence the acceleration at the equator
(with 𝑟 = 𝑎) is ‖𝑔‖ = 9.798m/s2, and at a pole (with 𝑟 = 𝑏) is ‖𝑔‖ = 9.864m/s2.

Question 2 As a followup on Question 1, compute the (magnitude of the) centrifugal
acceleration at the equator.

Answer 2 The magnitude of the centrifugal acceleration follows from the velocity and the
radius: 𝑎 = 𝑣2

𝑟 (uniform circular motion). Hence, we need the velocity. The Earth makes a full
turn in (one solar day) of 𝑇 = 23h56m = 86160 seconds. At the equator the circumference
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is 2𝜋𝑎 (with the radius set equal to the length of the semimajor axis 𝑎, not to be confused
with the symbol for acceleration which is used later), and hence velocity 𝑣 is 𝑣 = 2𝜋𝑎/𝑇 =
465.1m/s. The acceleration becomes 𝑎 = 0.034m/s2. The centrifugal acceleration is pointing
outward. The acceleration due to the attraction by the Earth’s mass is pointing inward to the
center of the Earth. At a pole, the centrifugal acceleration is zero.

Question 3 Suppose again that the Earth is a perfect ellipsoid, and that all mass is con
centrated in the Earth’s center. Would water flow from the equator to the poles, in case the
Earth would be not rotating?

Answer 3 Water flow is dictated by potential. The Earth is not rotating, hence we need
to consider only the gravitational potential, due to the attraction by the Earth’s mass. The
equation for potential is simply 𝑊 = 𝐺𝑀

𝑟 (32.5), at a location 𝑟 away from the Earth’s center.
At the equator we have 𝑟 = 𝑎 (the length of the semimajor axis of the ellipsoid), and at a
pole 𝑟 = 𝑏 (the length of the semiminor axis). As 𝑏 < 𝑎, we have 𝑊pole > 𝑊equator. The
potential is zero at 𝑟 = ∞, and the potential is larger at the pole (than at the equator), hence
in this case water would flow from the equator to the poles.





33
Vertical reference systems

Until now the focus has been on the geometry of points on the Earth’s surface, using for
instance geographic latitude and longitude on a reference ellipsoid, or x and ycoordinates in
a map projection. Now it is time to turn our attention to specifying the height, or elevation,
of points, and in particular add a physics perspective on the matter.

33.1. Ellipsoidal heights
The elevation of a point can only be expressed with respect to another point or reference
surface. In theory, it is possible to use the radius to the Center of Mass (CoM) of the Earth 
also the origin of most 3D coordinates systems  as a measure for elevation. This is however
only practical for Earth satellites, but not very practical for points on the surface of the Earth.
Instead it will be much more convenient to use the height above a reference ellipsoid, as we
have seen in Section 29.2, or, to use a different  physics inspired  definition of height, which
we will do in the next section.

ellipsoid

geoid (MSL)

Earth surfaceH

N

h = N + H

h :  ellipsoidal height  (h=N+H)
H : orthometric height
N : geoid height

sea surface h

Figure 33.1: Relation between ellipsoidal height ℎ, orthometric height 𝐻 and geoid height 𝑁 (arrows indicating
positive heights).

The ellipsoid is a geometric shape. Ellipsoidal heights are a relatively new concept, which
can only be measured using space geodetic techniques such as GPS. The main drawback of
ellipsoidal height is that surfaces of constant ellipsoidal height are not necessarily equipotential
surfaces. Hence, in an ellipsoidal height system, it is possible that water flows from a point
with low ‘height’ to a point with a higher ‘height’. This defies one on the main purposes
of height measurements: defining water levels and water flow; water flow is a concept from
physics. Since heights play an important role in water management and hydraulic engineering,
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a necessary requirement is that water always flows from a point with a higher height to points
with lower height.

33.2. Orthometric and normal heights
In order to deal with water flow, which is a physics concept, it is most appropriate to use
the gravity potential 𝑊 or potential differences Δ𝑊. The reader is referred to [80] for an
indepth discussion. For a quick review of gravity and potential numbers the reader is referred
to Chapter 32. Here it suffices to recapitulate from Chapter 32 that an equipotential surface,
with potential 𝑊0 such that it more or less coincides with mean sealevel over sea, fulfills all
the requirements for a reference surface for the height. The unit of potential 𝑊 is [Nm/kg]
which equals [m2/s2]. From Eq. (32.3) and (32.5) follows that the potential difference Δ𝑊
and height difference Δ𝐻 are related,

Δ𝑊 = −𝑔 Δ𝐻 (33.1)

with 𝑔 the gravity acceleration in [m/s2]. The gravity acceleration is a positive number:
the minus sign in Eq. (33.1) is because the gravity potential 𝑊 decreases with increasing
height, see Figure 32.1 at right, and therefore Δ𝑊 and Δ𝐻 have opposite sign. Note that
the gravity acceleration 𝑔 is not a constant but depends on the location on Earth and height.
Eq. (33.1) relates potential difference and physical height difference, and therefore allows for
easier interpretation in practice (that is, height expressed in meters), rather than working with
potential or a potential difference.

Orthometric heights are defined by the inverse of Eq. (33.1),

𝐻orthometric = −
1
𝑔(𝑊 −𝑊0) . (33.2)

with 𝑊0 the potential of the chosen reference equipotential surface (with 𝐻0 = 0).
Normal heights are based on the normal gravity 𝛾 instead of the (actual) gravity acceler

ation 𝑔,

𝐻normal = −
1
𝛾(𝑊 −𝑊0) (33.3)

with 𝛾 the normal gravity from a normal (model) gravity field that matches gravity acceleration
for a selected reference ellipsoid with uniform mass equal to the mass of the Earth.

In order to distinguish orthometric and normal heights from ellipsoidal heights we use a
capital 𝐻 for orthometric and normal heights, and a lower case ℎ for ellipsoidal heights.

The relation between orthometric (or normal) height 𝐻 and ellipsoidal height ℎ is given by
the following approximation

ℎ = 𝑁 + 𝐻 (33.4)

with 𝑁 the height of the geoid above the ellipsoid. This is illustrated in Figure 33.1. This
approximation is valid near the surface of the Earth. In fact, some of the smaller effects, or
the difference between normal and orthometric height, are often lumped with the geoid height
into 𝑁, which then strictly speaking is a correction surface for transforming orthometric (or
normal) height to ellipsoidal heights.

Instead of the word ‘height’, which is the vertical distance to any reference surface, one
often finds the words ‘altitude’ or ‘elevation’. Altitude of for instance an aircraft is the height
relative to the geoid (or Mean Sea Level), elevation refers to the height of a point on the
Earth’s surface relative to the geoid (or Mean Sea Level).
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33.3. Height measurements
In this section we consider two commonly used techniques for height measurements, leveling
and GPS.

33.3.1. Spirit leveling
Spirit leveling is one of the most precise techniques to measure height differences. To measure
the height difference between two points, as is shown in Chapter 3, vertical rods are set up at
each of these points and the height difference is obtained from two rod readings by a leveling
instrument positioned between the rods. In fact, a difference in vertical (geometric) distance
is observed, cf. Figure 3.5. When a loop (circuit) is measured, starting on a point A, to B, C,
…, finally ending on A, i.e. multiple leveling sections that close again on the starting point,
one would expect the mathematical sum of the height differences to be zero. This is not the
case for large leveling loops, even for perfect observations without measurement errors! The
reason is that gravity is not the same at every point on Earth.

To solve this problem the leveled height differences Δ𝐻𝑖 are converted to potential dif
ferences, Δ𝑊𝑖 = −𝑔𝑖Δ𝐻𝑖 conform Eq. (33.1), using gravity acceleration 𝑔 measured at the
surface. Then, for measurements with perfect precision, the sum of the potential differences
should be zero. Thus leveling networks can only be adjusted after the observed height dif
ferences have been converted into potential differences, otherwise the model is strictly not
correct. The output from the network adjustment are potential differences 𝑊𝑖 −𝑊0, with 𝑊0
the (chosen) potential at a reference point.

To compute the orthometric height Eq. (33.2) is used. This sounds simple, but the problem
with Eq. (33.2) is in the value for 𝑔 that should be used: this is the value of 𝑔 along the plumb
line between the𝑊0 and𝑊𝑖 equipotential surface, meaning it is a value of gravity that is inside
the Earth (as usually the geoid is below the surface) and hence density variations in the Earth
crust start to play a role, complicating matters very quickly. This is one of the main reasons
why many countries have chosen to use normal height instead of orthometric height for their
height reference system, as is it much easier to compute the normal gravity 𝛾.

Figure 33.2: The orthometric height is the height difference along the plumb line between an equipotential surface
𝑊 and 𝑊0. As is shown on the right, equipotential surfaces are not parallel. This means that for a large body of
water, as shown on the right, the orthometric height of the water level is not constant, 𝐻𝐶 ≠ 𝐻𝐷.

The main benefit of orthometric height is that it is the vertical distance (along the plumb
line) between two equipotential surfaces. But is this what we want? Not necessarily. Since
gravity is not constant over large areas, the orthometric height of an equipotential surface
(other than the reference surface) is not constant, as is shown in Figure 33.2. In other
words, equipotential surfaces are not parallel. This means, when working with large bodies
of water (e.g. a lake or river system) that orthometric height is not the best choice, or needs
a correction to maintain the same height for a level body of water. One possible choice is
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to use socalled dynamic heights. The dynamic height is simply computed by dividing the
geopotential number by a constant 𝛾45 (the normal gravity at 45∘ latitude).

Another option, especially for small areas and/or countries with little variation in gravity,
is to use uncorrected leveled heights, without the conversion to geopotential numbers. This
kind of height is used for instance by the Netherlands and Belgium. The differences between
uncorrected leveled and orthometric heights are very small for the Netherlands and the only
noticable differences occur in the South of Limburg.

33.3.2. GPS leveling
Heights measured by GPS (GNSS) are always with respect to the reference ellipsoid. To convert
these into orthometric height the inverse of Eq. (33.4) must be used, i.e. the geoid height
𝑁 needs to be subtracted, and to convert ellipsoidal height to normal height the quasigeoid
height should be subtracted.

Problems with GPS height measurements is that these are not as precise as spirit leveling
(see also Chapter 15), which is in particular the case for short observation times, and that a
precise (quasi)geoid is needed to convert ellipsoidal height into orthometric or normal height.
However, when a precise (quasi)geoid is available, and centimeter accuracy for the height is
sufficient, GPS leveling is much more cost effective than spirit leveling, especially over larger
distances.

Figure 33.3: Differences between national height datums in Europe and reference tidegauges in centimeters.
Also note that different countries use different kinds of heights. The Netherlands and Belgium use uncorrected
leveled heights. Normal heights are in use in for instance France and Germany, and Spain and Italy use orthometric
heights. Image courtesy of Federal Agency for Cartography and Geodesy (BKG, Germany) [81], 2020.

https://evrs.bkg.bund.de/Subsites/EVRS/EN/Projects/HeightDatumRel/height-datum-rel_cont.html
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33.4. Height datums
The zero point, or datum point, for the heights depends on the choice of 𝑊0. This datum
point is often defined based on tidegauge data such that the geoid is close to mean sea
level (MSL). For the European Vertical Reference System (EVRS), based on an equipotential
surface (constant Earth’s gravity field potential), the datum point is Normaal Amsterdams
Peil (NAP) [81]. The EVRS serves to harmonize the vertical reference of spatial coordinates
in Europe. In Figure 33.3 the reference tidegauges used in different European countries
are shown, together with the differences in the height datum with respect to the European
Vertical Reference Frame 2019 (EVRS2019). The differences have been computed from the
European readjustment of precise levelings. The effects of using different tidegauges, and
the differences between Mean SeaLevel for the North Sea, Baltic Sea, Mediterranean, Atlantic
Ocean and Black Sea are clearly visible. Also some countries, for instance Belgium, do not
use mean sealevel to define their height datum but use low water spring as a reference.

It is not necessary to use mean sealevel as reference surface for all applications. In
particular for hydrography, it is more common to use the Lowest Astronomical Tide (LAT) as a
reference surface1. This is not an equipotential surface as this reference surface also depends
on the tidal variations.

Figure 33.4: LAT, geoid and ellipsoid reference surfaces with the relations between chartered depth 𝑑, observed
water depth 𝑙, actual water level 𝑡, ellipsoidal height ℎ, orthometric height 𝐻, height of the LAT reference surface
𝐿 and geoid height 𝑁. They are related as ℎ − 𝑐 − 𝑙 − 𝐿 = −𝑑, and arrows show positive direction.

Lowest Astronomical Tide (LAT) is the lowest predicted tide level that can occur under any
combination of astronomical conditions assuming average meteorological conditions. The ad
vantage for hydrographic chart datums is that all predicted tidal heights must then be positive
(and one practically avoids having less depth or clearance than chartered, hence preventing
grounding of ships), although in practice lower tides may exceptionally occur due to e.g. me
teorological effects. In the Netherlands, UK and many other countries charted depths and
drying heights on nautical charts are given relative to LAT, and tide tables give the height of
the tide above LAT, as is shown in Figure 33.4. The depth of water, at a given point and at
a given time, is then calculated by adding the charted depth 𝑑 to the height of the tide 𝑡, or
by subtracting the drying height from the height of the tide, with all heights and depths given
with respect to LAT. Height (or depths) with respect to LAT can be converted into heights with
respect to the geoid or ellipsoid using gridded correction data.

1Lowest Astronomical Tide (LAT) is only one of many reference surfaces used in hydrography; for an overview of
existing reference surfaces in hydrography see e.g. [73]
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33.5. Exercises and worked examples
This section presents a number of simple exercises of working with different heights.

Question 1 Modeling the Earth as a sphere with radius equal to the semimajor axis of the
WGS84 ellipsoid (see Table 31.1), and assuming that all mass is concentrated in the Earth’s
center, compute the gravitational acceleration at the surface.

Answer 1 The semimajor axis of the WGS84 ellipsoid is 𝑎 = 6378137 m. The Earth’s
gravitational constant is 𝐺𝑀 = 3986004.418 ⋅ 108 m3/s2. The magnitude of the gravitional
acceleration at radius 𝑟 away from the Earth’s center is simply 𝑎 = 𝐺𝑀/𝑟2, see Chapter 32,
Eq. (32.2). This yields 𝑎 = 9.798 m/s2. The acceleration vector points downwards to the
Earth’s center.

Question 2 The ellipsoidal height of a geodetic marker on Terschelling is 56.098 m. The
ellipsoidal height of a geodetic marker in Eijsden, near Maastricht is 103.797 m. These coor
dinates are given in ETRS89 (and hence based on the WGS84 ellipsoid). The geoidheight
difference between these two locations is 4.601 m (that is, the geoid height near Maastricht
is larger than in Terschelling; NLGEO2004 geoid with respect to the GRS80/WGS84 ellipsoid).
Compute the orthometric (level) height difference between Terschelling and Eijsden.

Answer 2 The relation between ellipsoidal height ℎ and orthometric (leveled) height 𝐻 is
ℎ = 𝐻 +𝑁, with 𝑁 the geoid height. This relation can also be exploited in a heightdifference
ℎ𝑇𝐸 = 𝐻𝑇𝐸 + 𝑁𝑇𝐸, with ℎ𝑇𝐸 = ℎ𝐸 − ℎ𝑇, with 𝑇 for Terschelling, and 𝐸 for Eijsden. The
ellipsoidal height difference between Terschelling and Eijsden is ℎ𝑇𝐸 = ℎ𝐸 − ℎ𝑇 = 47.699 m.
The geoidheight difference was given as 𝑁𝑇𝐸 = 4.601 m. Hence, 𝐻𝑇𝐸 = 43.098 m. Hence,
the leveled height difference is about 4.6 m smaller than the ellipsoidal height difference. With
the leveled height of Terschelling being 𝐻𝑇 = 14.695 m, the leveled height of Eijsden becomes
𝐻𝐸 = 57.793 m.

Question 3 The position of a ship is measured with GPS; the (ellipsoidal) height (of the
antenna) is ℎ=46 m. The height of the GPSantenna on the ship with respect to the bottom
of the ship (the keel) is 𝑣=7 m. The chartered depth of the waterway at the ship’s location,
retrieved from a hydrographic map, is 𝑑=4 m (given with respect to the LAT reference surface).
The height of the LAT reference surface with respect to the ellipsoid is 𝐿=42 m. Compute the
clearance of the ship (i.e., the height of the ship’s keel above the bottom of the waterway. Note
that positive height is upward, and positive depth is downward, as is indicated in Figure 33.4.

Answer 3 The keel of the ship is ℎ − 𝑣 above the ellipsoid, ℎ − 𝑣=467=39 m. The
waterwayfloor is at 𝐿 − 𝑑 above the ellipsoid, 𝐿 − 𝑑=424=38 m. Hence, the clearance is:
3938=1 m.



34
International reference systems and

frames

In this chapter a number of common international reference systems and frames is discussed.
We start with the well known worldwide WGS84 system used by GPS, but quickly shift forcus
to the more important International Terrestrial Reference System (ITRS), which is realized
through the International Terrestrial Reference Frames (ITRF). Then the focus is shifted to re
gional reference systems and frames, with the European Terrestrial Reference System ETRS89
as our prime example.

34.1. World Geodetic System 1984 (WGS84)
The USA Department of Defense (DoD) World Geodetic System 1984 (WGS84) is probably by
far the best known global terrestrial reference system. Which is understandable considering
the popularity of Global Positioning System (GPS) receivers, but it is also somewhat surprising
considering the fact that WGS84 is primarily a US military system.

For civilian users WGS84 coordinates are only obtainable through the use of GPS. The only
WGS84 realization available to civilian users are the GPS broadcast satellite orbits as civilian
users have no direct access to tracking sites or tracking data from the US military. This means
that for civilian users the accuracy of WGS84 is restricted to the accuracy of the GPS broadcast
orbits, which is of the order of a few meters (see also Table 14.1 and Figure 14.8). Users may
try to improve the accuracy to a few decimeters by taking averages of GPS station positions
over several days, but then if accuracy is really an issue it would be much better to switch to
ITRF or ETRS89, discussed in the next sections.

In fact there are different WGS84 realizations. Until GPS week G7301, WGS84 was based
on the US Navy Doppler Transit Satellite System. Newer realizations of WGS84 coincide with
the ITRS and its realizations ITRFyy, see Section 34.2, at the decimeter level. For these
WGS84 realizations there are no official transformation parameters. The newer realizations
are adjusted occasionally in order to update the tracking station coordinates for plate velocity.
These updates are identified by the GPS week, i.e. WGS84 (G730, G873 and G1150).

In practice, when precision does not really matter and the user is satisfied with coordinates
at the one meter level, coordinates in ITRS, or derivatives of ITRS (like the European ETRS89)
are sometimes simply referred to as ‘WGS84’.

The use of WGS84 should be avoided for applications other than for hiking, regular naviga
tion, and other nonprecision applications. The WGS84 is not suited for applications requiring
1the GPS week number is the number of weeks counted since January 6, 1980
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decimeter, centimeter or millimeter accuracy. For surveying and geoscience applications the
more accurate ITRF, or ETRS89 in Europe, should be used.

34.2. International Terrestrial Reference System and Frames
The International Terrestrial Reference System (ITRS) is a global reference system corotating
with the Earth. It is realized through International Terrestrial Reference Frames (ITRF), which
provides coordinates of a set of points located on the Earth’s surface [82]. It can be used
to describe plate tectonics, regional subsidence or displacements in a global context, or to
represent the Earth when measuring its rotation in space.

The ITRF is maintained by the International Earth Rotation and Reference Systems Ser
vice (IERS) [83], through an international network of space geodetic observatories and an
international network of GNSS (GPS) tracking stations.

The ITRF is the most accurate terrestrial reference frame to date. Therefore, it is frequently
used as the basis for other reference frames, or, as an intermediate to describe relations
between coordinate systems. For instance, the well known WGS84, used by GPS, is directly
linked to the ITRF.

The definition of the International Terrestrial Reference System (ITRS) is based on IUGG
(International Union of Geodesy and Geophysics) resolution No 2 adopted in Vienna, 1991.
As a consequence, the ITRS is

• a geocentric corotating system, with the center of mass being defined for the whole
Earth, including oceans and atmosphere,

• the unit of length is the meter and its scale is consistent with the Geocentric Coordinate
Time (TCG) by appropriate relativistic modeling,

• the time evolution of the orientation is ensured by using a nonetrotation condition with
regards to horizontal tectonic motions over the whole Earth,

• the initial orientation is given by the Bureau International de l’Heure (BIH) orientation
at 1984.0.

Realizing a global terestrial reference system is not trivial as the Earth is not a rigid body.
Even the outer layer, the Earth’s crust, is flexible and changes under the influence of solid Earth
tides, loading by the oceans and atmosphere, and tectonics. From a global perpective points
are not stationary, but moving. Therefore each individual ITRF contains station positions and
velocities, often together with full variance matrices, computed using observations from space
geodetic measurement techniques2. The stations are located on sites covering every continent
and tectonic plate on Earth. To date there are thirteen realizations of the ITRS3: ITRF2008
and ITRF2014 are the latest two realizations. ITRF2020 will be the next realization, using
more recent data, reprocessing of old data, improved models and processing software.

The realization of the ITRS is an ongoing activity resulting in periodic updates of the ITRF
reference frames. These updates reflect

• improved precision of the station positions 𝐫(𝑡0) and velocities �̇� due to the availability
of a longer time span of observations, which is in particular important for the velocities,

2Very Long Baseline Interferometry (VLBI), Lunar Laser Ranging (LLR), Satellite Laser Ranging (SLR), Global
Positioning System (GPS) and Doppler Orbitography and Radiopositioning Integrated by Satellite system (DORIS).
3ITRF88, ITRF89, ITRF90, ITRF91, ITRF92, ITRF93, ITRF94, ITRF96, ITRF97, ITRF2000, ITRF2005, ITRF2008
and ITRF2014. The numbers in the ITRF designation specify the last year of data that were used. For example
for ITRF97, which was published in 1999, space geodetic observations available up to and including 1997 were
used, while for ITRF2000 an additional three years of observations, up to and including 2000, were used.
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Figure 34.1: ITRF2008 horizontal velocity field at space geodetic observatory locations due to plate tectonics with
major plate boundaries shown in green. Continents are shown in black lines, with Europe and Africa on the right.
Image taken from [82] under CC BYNC license, see also [84].

• improved datum definition due to the availability of more observations and better models,

• discontinuities in the time series due to earthquakes and other geophysical events,

• newly added and discontinued stations,

• and occasionally a new reference epoch 𝑡0.

All ITRF model the secular changes in the Earth’s crust. Secular motion is practically best de
scribed as ‘straight line’ motion. It refers to persistent change over a longer time period (a year
or longer). In particular a secular motion does not include periodic and/or tidal components.
The position 𝐫(𝑡) at a specific epoch 𝑡 is given by

𝐫(𝑡) = 𝐫(𝑡0) + �̇� ⋅ (𝑡 − 𝑡0) (34.1)

The ITRF2008 velocities are given in Figure 34.1. The velocities, in the vector �̇�, are of
the order of a few centimeters per year up to a decimeter per year for some regions. This
means that for most applications velocities cannot be ignored. It also implies that when
coordinates are distributed, it is equally important to provide the epoch of observation to
which the coordinates refer. Higher frequencies of the station displacements, e.g. due to solid
Earth tides and tidal loading effects with subdaily periods, can be computed using models
specified in the IERS conventions, Chapter 7 [85]. For more information on the realization of
ITRF2008 see [82].

In Figure 34.2 a time series of station positions for a GPS receiver in Delft is shown, cf.
Figure 16.1 at right. The top figure shows a couple of features: (1) the secular motion of the
point, (2) jumps in the coordinate time series and velocity whenever a new ITRF is introduced,
and (3) discontinuities due to equipment changes (mainly antenna changes). The bottom fig
ure shows the time series after reprocessing in the most recent reference frame. The jumps
due to changes in the reference frame have disappeared and the daytoday repeatability
has been improved considerably due to improvements in the reference frame and processing
strategies. One feature is not shown in Figure 34.2, and that is the effect of earthquakes.
Stations which are located near plateboundaries would experience jumps and postseismic

http://www.iers.org/IERS/EN/DataProducts/Conventions/conventions.html
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relaxation effects in the time series due to earthquakes. Although geophysically very interest
ing, this makes stations near plate boundaries less suitable for reference frame maintenance.
Figure 34.3 shows the same time series, but in the European ETRF2000 reference frame,
which is discussed in Section 34.3.

Figure 34.2: Time series of station positions of a permanent GPS receiver in Delft from 19962014. The top figure
shows the time series in the ITRFyy reference frame that was current at the time the data was collected. The
bottom figure shows the data after reprocessing in the IGS05/IGS08 reference frame that is based on the most
recent ITRF2008 frame. The vertical red lines indicate equipment changes. Image taken from EUREF Permanent
GNSS Network (EPN) [86], for private, educational and scientific purpose.

The datum of each ITRF is defined in such a way as to maintain the highest degree of
continuity with past realizations and observational techniques4. The ITRF origin and rates are
essentially based on the Satellite Laser Ranging (SLR) time series of Earth orbiting satellites.
4The International Terrestrial Reference Frame (ITRF) is maintained by the International Earth Rotation and Ref
erence Systems Service (IERS) [83]. The IERS is also responsible for the International Celestial Reference Frame

http://www.epncb.oma.be/_productsservices/timeseries/index.php?station=DELF00NLD&type=ITRS
http://www.epncb.oma.be/_productsservices/timeseries/index.php?station=DELF00NLD&type=ITRS
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The ITRF orientation is defined in such a way that there are null rotation parameters and null
rotation rates with respect to ITRF2000, whereas for ITRF2000 is no net rotation with respect
to the NNRNUVEL1A plate tectonic model is used. These conditions are applied over a core
network of selected stations. The ITRF scale and scale rate are based on the VLBI and SLR
scales/rates. The role of GPS in the ITRF is mainly to tie the sparse networks of VLBI and SLR
stations together, and provide stations with a global coverage of the Earth.

Although the goal is to ensure continuity between the ITRF realizations as much as possible
there are transformations involved between different ITRF that reflect the differences in datum
realization. Each transformation consists of 14 parameters, a 7parameter similarity transfor
mation for the positions involving a scale factor, three rotation and three translations, and a
7parameter transformation for the velocities involving a scale rate, three rotation rates and
three translation rates. The transformation parameters and formula are accessible through
[83]. The transformation formula is essentially Eq. (28.15), except for a different sign of the
transformation parameters.

Webbased Precise Point Positioning (PPP) services (cf. Section 15.1.6), which utilize satel
lite orbits and clocks from the International GNSS Service (IGS), allow GPS users to directly
compute positions in ITRF. At the same time many regional and national institutions have den
sified the IGS network to provide dense regional and national networks of station coordinates
in the ITRF.

When working with the ITRF it is typical to provide coordinates as Cartesian coordinates.
However, the user is free to convert these into geographic coordinates. The recommended
ellipsoid for ITRS is the GRS80 ellipsoid, see Table 31.1. This is the same ellipsoid as used for
instance by WGS84.

34.3. European Terrestrial Reference System 1989 (ETRS89)
The European Terrestrial Reference System 1989 (ETRS89) is the standard coordinate system
for Europe. It is the reference system of choice for all international geographic and geodynamic
projects in Europe5. The system also forms the backbone for many national reference systems.
Although the ITRS plays an important role in studies of the Earth’s geodynamics it is less
suitable for use as a European georeferencing system. This is because in ITRS all points in
Europe exhibit a moreorless similar velocity of a few centimeters per year, as was shown in
Figures 34.1 and 34.2.

The ETRS89 terrestrial reference system is coincident with ITRS at the epoch 1989.0 and
fixed to the stable part of the Eurasian Plate. The year in the name ETRS89 refers explicitly
to the time the system was coincident with ITRS6. ETRS89 is accessed through the EUREF
Permanent GNSS Network (EPN)7, a sciencedriven network of continuously operating GPS

(ICRF) and the Earth Orientation Parameters (EOPs) that connect the ITRF with the ICRF. The observational
techniques are organized in services, such as the International GNSS Service (IGS), International Laser Ranging
Service (ILRS) and International VLBI Service (IVS). For instance, the IGS is a voluntary organization of scientific
institutes that operates together a tracking network of over 300 stations, several analysis and data centers, and
a central bureau [46]. The main product of IGS are precise orbits for GNSS satellites (including GPS), satellite
clock errors and station positions all in the ITRF.
5The ETRS89 was established in 1989 and is maintained by the subcommission EUREF (European Reference
Frame) of the International Association of Geodesy (IAG). ETRS89 is supported by EuroGeographics [87] and
endorsed by the European Union (EU).
6Sometimes people think the coordinates should be given at epoch 1989.0, but this is not necessary, as coordinates
are timevariant in both systems, and can be given at any epoch. Best practice is to give the coordinates at the
epoch of observation.
7All contributions to the EPN are voluntary, with more than 100 European agencies and universities involved. The
reliability of the EPN network is based on extensive guidelines guaranteeing the quality of the raw GPS data to the
resulting station positions and on the redundancy of its components. The GPS data are also used for a wide range
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Figure 34.3: Time series of station positions of a GPS receiver in Delft from 19962014 in the European reference
frame ETRF2000. The horizontal station velocity In ETRS89 is at the few mm level. The vertical red lines indicate
equipment changes which cause jumps of a few mm in the time series. Image taken from EUREF Permanent GNSS
Network (EPN) [86], for private, educational and scientific purpose.

reference stations with precisely known station positions and velocities in the ETRS89, or
through one of many national or commercial GPS networks which realize ETRS89 on a national
scale.

Station velocities in ETRS89 are generally very small because ETRS89 is fixed to the stable
part of the Eurasian plate. Compared to ITRS, with station velocities in the order of a few
centimeter/year, station velocities in ETRS89 are typically smaller than a few mm/year. This
is clearly illustrated in Figure 34.3 for the permanent GPS station in Delft that was also used
for Figure 34.2. Of course, there are exceptions in geophysically active areas, but for most
practical applications, one may ignore the velocities. This makes ETRS89 well suited for land
surveying, high precision mapping and Geographic Information System (GIS) applications.
Also, ETRS89 is well suited for the exchange of geographic data sets between European na
tional and international institutions and companies. On other continents solutions similar to
ETRS89 have been adopted.

The ETRS89 system is realized in several ways, and like with ITRS, realizations of a sys
tem are called reference frames. By virtue of the ETRS89 definition, which ties ETRS89 to
ITRS at epoch 1989.0 and the Eurasian plate, for each realization of the ITRS (called ITRFyy),
also a corresponding frame in ETRS89 can be computed. These frames are labelled ETRFyy.
Each realization has a new set of improved positions and velocities. The three most recent
realizations of ETRS89 are ETRF2000, ETRF2005 and ETRF20148. Since each realization also
reflects improvements in the datum definition of ITRF, which results in small jumps in the
coordinate time series, the EUREF Governing Board (formally Technical Working Group) rec
ommends not to use the ETRF2005 for practical applications, and instead to adopt ETRF2000
as a conventional frame of the ETRS89 system. However, considering the diverse needs of

of scientific applications such as the monitoring of ground deformations, sealevel, space weather and numerical
weather prediction.
8there is no ETRF2008

http://www.epncb.oma.be/_productsservices/timeseries/index.php?station=DELF00NLD&type=ETRS89
http://www.epncb.oma.be/_productsservices/timeseries/index.php?station=DELF00NLD&type=ETRS89
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individual countries, it is the countries’ decision to adopt their preferred ETRS89 realization.
Most countries adopted the recommended ETRF2000, but not every European country has,
and considering the improved accuracy and stability of the ITRF2014, some could switch to
ETRF2014.

Another way to realize ETRS89 is by using GNSS campaign measurements or a network of
permanent stations. From 1989 onwards many national mapping agencies have organized GPS
campaigns to compute ETRS89 coordinates for stations in their countries, and then link their
national networks to ETRS89. Later on these campaigns were replaced by networks of perma
nent GPS receivers, see e.g. Figure 16.1 at right. These provide users with downloadable GPS
data and coordinates in ETRS89 that they can use together with their own measurements.
The permanent networks also provide 24/7 monitoring of the reference frames. An example
is the Active GPS Reference System for the Netherlands (AGRS.NL), which was established in
1997. Data for the AGRS.NL and other GNSS receivers is available from the Dutch Permanent
GNSS Array (DPGA) website operated by our university [88]. Nowadays the Dutch Kadaster,
as well as several commercial providers, operate realtime network RTK services (NETPOS,
06GPS, LNRNET, and others) that provide GPS data and corrections in realtime which al
lows instantaneous GPS positioning in ETRS89 at the centimeter level, see e.g. Figure 15.2.
The Dutch network RTK services are certified by the Dutch Kadaster [89] and thus provide a
national realization of ETRS89 linked to the ETRF2000 reference frame. Similar services are
operated in many other European countries.

When working with ETRS89 it is typical to provide coordinates as either Cartesian coordi
nates, or, geographic coordinates and ellipsoidal height (using the GRS80 ellipsoid). There is
no European standard for the type of map projection to be used, so the user can still select
a favorite map projection depending on the application at hand. However, EuroGeographics
[87] does recommend to use one of three selected projections: Lambert Azimuthal Equal Area
(ETRS89/LAEA, EPSG:3035) for statistical mapping at all scales and other purposes where true
area representation is required, Lambert Conformal Conic 2SP (ETRS89/LCC, EPSG:3034) for
conformal mapping at 1:500,000 scale or smaller, or Universal Transverse Mercator (UTM)
for conformal mapping at scales larger than 1:500,000. In several countries, including the
Netherlands, a conventional transformation from ETRS89 to grid (map) coordinates that re
semble national systems is provided, see Chapter 35. A service to convert coordinates from
ITRS to ETRS89, and vice versa, is provided at the EPN website [86]. Specifications for the
transformation procedure and reference frame fixing can be found in the EUREF Technical
Note 1 [90].

34.4. Exercises and worked examples
Position coordinates in the International Terrestrial Reference Frame (ITRF) are timevariant,
in the first place due to plate motion. Below a simple exercise is presented to propagate
position coordinates given at a specific epoch to another epoch in time.

Question 1 The position coordinates of a geodetic marker in Westerbork are given in the
ITRF2008 at epoch 2015.0 as 𝑋 = 3828735.710 m, 𝑌 = 443305.117 m, 𝑍 = 5064884.808 m,
with velocities 𝑉𝑋 = −0.0153 m/y, 𝑉𝑌 = 0.0160 m/y, 𝑉𝑍 = 0.0096 m/y. Compute the position
coordinates of this marker, in ITRF2008, for January 1st, 2016.

Answer 1 The position coordinates are given in the International Terrestrial Reference
Frame 2008, a realization of the ITRS. Generally positions are subject to small movements
within a global reference system (due to Earth’s dynamics). In this question the coordinates
are given for January 1st, 2015. And also the velocities are given (in meter per year) to
compute the position at any other instant in time. We can propagate the position over 1 year to

http://gnss1.tudelft.nl/dpga
http://gnss1.tudelft.nl/dpga
http://www.epncb.oma.be/_productsservices/coord_trans/
http://etrs89.ensg.ign.fr/pub/EUREF-TN-1.pdf
http://etrs89.ensg.ign.fr/pub/EUREF-TN-1.pdf
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January 1st, 2016. The resulting coordinates become: 𝑋 = 3828735.695 m, 𝑌 = 443305.133,
𝑍 = 5064884.818.



35
Dutch national reference systems

In this chapter the Dutch triangulation system RD and height system NAP, and their relation
to the ETRS89, are presented. The focus in this chapter is on the Netherlands, with the
remark, that many other countries have undergone similar developments and adopted similar
approaches.

35.1. Dutch Triangulation System (RD)
The Dutch Triangulation System (RD), in Dutch Rijksdriehoeksstelsel, has a history dating
from the 19th century. Following a century of traditional triangulations, GPS started to replace
triangulation measurements in 1987. The increasing use of GPS resulted in a redefinition
of RD in 2000, whereby from 2000 onwards RD was linked directly to ETRS89 through a
transformation procedure called RDNAPTRANS.

Figure 35.1: First order triangulation network for the Netherlands of 1903 (left) and ‘GPSKernnet’ (GPS base
station) network of 1997 (right) [91].
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35.1.1. RD1918
The firstorder triangulation grid was measured in the years between 1885 and 1904 (Fig
ure 35.1). The church tower of Amerfoort was selected as the origin of the network and as
reference ellipsoid the Bessel (1841) ellipsoid of was chosen. The scale was derived from a
distance measurement on a base near Bonn, Germany. Between 1896 and 1899 geodetic
astronomic measurements were carried out at thirteen points throughout the Netherlands in
order to derive the geographical longitude and latitude of the origin in Amersfoort and the
orientation of the grid. As map projection an oblique stereographic double projection was
selected in 1918 by Heuvelink [92]. The projection consists of a GaussSchreiber confor
mal projection of Bessel’s (1841) ellipsoid onto a sphere, followed by a oblique stereographic
projection of the sphere to a tangential plane, as shown in Figure 35.2.

The stereographic projection is a perspective projection from the point antipodal to the
central point in Amersfoort on a plane parallel to the tangent at Amersfoort. This projection
is conformal, which means the projection is free from angular distortion, and that lines in
tersecting at any specified angle on the ellipsoid project into lines intersecting at the same
angle on the projection. Therefore, meridians and parallels will intersect at 90∘ angles in the
projection, but, except for the central meridian through Amersfoort, meridians will converge
slightly to the North and do not have constant xcoordinate in RD. This is known as meridian
convergence. This projection is not equalarea. Scale is true only at the intersection of the
projection plane with the sphere and is constant along any circle around the center point in
Amerfoort. However, by letting the tangential projection plane intersect the sphere (secant in
stead of tangent, see Figure 30.3), the scale distortions at the edges of the projection domain
will be within reasonable limits.

Figure 35.2: RD double projection (Bessel (1841) ellipsoid → Sphere → Plane) and definition of RD coordinates
Image by T. Nijeholt, August 2007, taken from Wikimedia Commons [9], under CC BYSA 3.0 license.

During the years between 18981928 a densification programme was carried out which
resulted in the publication of 3732 triangulation points. At the time of publication already
365 points had disappeared or were disrupted. To prevent further reduction in points and
maintain the network the ‘Bijhoudingsdienst der Rijksdriehoeksmeting’ was established at the
Dutch Cadastre. From 1960 to 1978 a complete revision was carried out and the RD system

https://nl.wikibooks.org/wiki/Bestand:Het_RD_co%C3%B6rdinaten_stelsel_opgehangen_aan_het_geografische_co%C3%B6rd_stelsel.PNG
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was also connected to neighboring countries, which resulted in a reference frame with roughly
6000 points with distances of 2.54 km between each other. To prevent confusion between
the xcoordinates and ycoordinates, and to obtain always positive coordinates, the origin of
the coordinates was shifted 155 km to the West and 463 km to the South (False Easting and
Northing). This resulted in only positive coordinates and ycoordinates that are always larger
than the xcoordinates. It also avoids confusion between the old and new coordinates.

Starting in 1993 a socalled ‘GPSKernnet’ (GPS base network) of 418 points was estab
lished to offer GPS users a convenient way to connect to the RD system. See Figure 35.1.
Most of traditional triangulation points, many of which are church spires or towers, are not
accessible to GPS measurements. The points in the GPSKernnet have an unobstructed view
of the sky and are easily accessible by car. The GPSKernnet points are located at distances
of 10 to 15 km from each other, which is well suited for GPS baseline measurements. The
points in the GPS base network have been connected to neighboring RD points to determine
RD coordinates and by secondorder leveling to neighboring NAP benchmarks to determine
heights. In addition, the point in the GPS base network were connected by GPS measure
ments to points in the European ETRS89 system. As a result the GPS base network points
have measured coordinates both in RD/NAP and ETRS89. This made it possible  for the first
time  to study systematic errors in the RD system. It was found that the RD system of 1918
has systematic errors of up to 25 cm with significant regional correlations, as shown in Fig
ure 35.3 for the province of Friesland. In the era of GPS this may seem as a large number,
but in 1918 this was an excellent accomplishment.

Today, about 105 out of the original 418 ‘Kernnet’ points, nowadays called GNSSKernnet,
are maintained and regularly checked by the Kadaster.

Figure 35.3: Differences between RD and ETRS89 based coordinates for the GPSKernnet in the province of
Friesland, showing significant regional correlation between the vectors [91].

The systematic errors in the RD system were never an issue until the introduction of GPS.
Before GPS, all measurements were connected to nearby triangulation points which could al
most always be found within a radius of 34 km, and users never noticed large discrepancies
unless the triangulation points were damaged. However, with GPS it became routine to mea
sure over distances of 15 km up to 100 km to the nearest GPS basenet point or permanent
GPS receiver, and then systematic errors in RD became noticeable. This led to a major revision
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Figure 35.4: RDNAPTRANS transformation procedure until and including RDNAPTRANS™2008. The figure outlines
the relationships and transformations between ETRS89, RD and NAP (Figure after [91]). The coordinates below
the line, with the exception of Cartesian coordinates in ETRS89, are used only for computational purposes and
should never be published or distributed to other users. The procedure used for RDNAPTRANS™2018 is different
in a couple of aspects, see Figure 35.5.

in the definition of RD in 2000.

35.1.2. RD2000 and RDNAPTRANS
In 2000 a new definition of the RD grid was adopted and assigned the name RD2000. This
definition replaces Heuvelink’s (1918) definition, which is since then referred to as RD1918.

In the new definition RD2000 is based on ETRS89. Within this new definition two types
of coordinates are allowed to be used in practice: (1) Cartesian or geographic coordinates in
ETRS89, and (2) RD x and ycoordinates. The big difference is that the RD coordinates are
now obtained by a conventional transformation from the ETRS89 coordinates. The transfor
mation has been assigned the name RDNAPTRANS. This definition was chosen to minimize
the impact for users. GPS users can happily work with ETRS89, and if they wish, transform
their coordinates to RD at the very last stage. Owners of large databases with geographic
information in RD have their investments protected and do not need to make changes.

The new definition has not changed the published RD coordinates significantly. In addition,
the European ETRS89 frame was introduced as the threedimensional reference frame for the
Netherlands. This was effected by the publication of the ETRS89 coordinates along with RD
coordinates.

The RDNAPTRANS transformation procedure of Figure 35.4 is an essential part of the
RD2000 definition. It has four main elements:

1. 7parameter transformation from ETRS89 to an intermediate system defined on the
Bessel (1841) ellipsoid, including conversions from Cartesian to geographic coordinates),
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resulting in latitude, longitude and height on the Bessel (1841) ellipsoid.

2. a map projection using the same constants and definitions as RD1918, including a false
Easting and Northing of 155 km and 463 km. The projected coordinates are referred to
as ‘pseudo RD’.

3. a conventional correction grid for the x and ycoordinates in RD, which ‘corrects’ the
pseudo RD coordinates of the previous step for the systematic distortions in the old
RDgrid. The corrections are obtained by interpolation in the correction grid.

4. quasigeoid for the conversion between NAP heights and height above the GRS80 ellip
soid of ETRS89, which will be discussed next in Section 35.2.

The transformation procedure works in both directions, and, both for 2D and 3D coordinates.
In case no heights are available the Kadaster recommends to use an approximate height, e.g.
by using a digital terrain model, or, when that is not possible, to use ℎ = 0mwhen transforming
from RD to ETRS89 and ℎ = 43 m when transforming from ETRS89 to RD (which are close
to 𝑁𝐴𝑃 = 0) so that one gets the same result after transforming back and forth. In this
case geographical latitude and longitude can be used, but heights, as well as 3D Cartesian
coordinates are meaningless. Outside the transformation procedure the use of geographic
coordinates on the Bessel (1841) ellipsoid and pseudoRD coordinates is not recommended.
For geographic coordinates solely ETRS89 coordinates should be used within the Netherlands.
For RD coordinates only coordinates that include the systematic distortions should be used.
Failing to do so may result in pollution and errors of existing databases based on RD.

Since 2000 two minor revisions of RD2000 occurred in 2004 and 2008, and one major
revision in 2018. The minor revisions were related to changes in the European reference
frame, which affected the 7parameter transformation, the introduction of an improved NL
GEO2004 geoid in 2004, and a small height offset in 2008. The original 2000 version used
the ‘De Min’ geoid and older transformation parameters. The modified transformation pro
cedures are referred to as RDNAPTRANS™2004 and RDNAPTRANS™2008, published in 2005
and respectively 2009. The original transformation of 2000 is since then also referred to as
RDNAPTRANS™2000. In 2018 work started on a major revision of RDNAPTRANS, resulting in
RDNAPTRANS™2018, which was published in 2019.

More revisions may be possible in the future , as there is a need to maintain a close link
with the most up to date realizations of ETRS89 as well as to retain as constant as possible
RD coordinates.

35.1.3. RDNAPTRANS™2018
Although the RDNAPTRANS transformation procedure is well documented and example source
code in C and Matlab is available free of charge, the transformation procedure was only sup
ported by a few Geographic Information System (GIS) packages. The correction grid that was
used in older versions of RDNAPTRANS was often not directly supported by software and the
map projection chosen for RD was considered to be exotic. This, combined with the fact that
the 7parameter transformation entails a significant shift and rotation, has sparked a discus
sion whether RD coordinates should be replaced by a different map projection. At the heart of
the discussion is that many users find it difficult to work directly with geographic coordinates
(latitude and longitude) and prefer working with rectangular 2D grid coordinates, but lack the
expertise and software to do the conversion to RD.

As the result of this discussion the RDNAPTRANS procedure has been modified. In RDNAP
TRANS™2018 the correction grid is applied to the latitude and longitude coordinates instead
of the pseudo RD coordinates, the NLGEO2018 quasi–geoid is used instead of NLGEO2004
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Figure 35.5: NTv2 transformation procedure used by RDNAPTRANS™2018. The figure outlines the relationships
and transformations between ETRS89, RD2000 and NAP using the proposed NTv2 procedure, in variant 2 of
RDNAPTRANS™2018 where the datum transformation is included in the correction grid. The coordinates below
the line are used only for computational purposes and should never be published or distributed to other users.

geoid, and the interpolation and correction grids are based on international standards. The
RD correction grid is based on the Canadian NTv2 correction procedure (National Transforma
tion version 2) and for the NLGEO2018 the VDatum format is used, both of which are better
supported by existing softwares, including PROJ [77]. As shown in Figure 35.5, the NTv2
procedure employs a correction grid to convert latitude and longitude in ETRS89 directly to
latitude and longitude on the Dutch Bessel (1841) ellipsoid, which are the input for the RD map
projection. The procedure shown in Figure 35.5 includes the datum transformation into the
correction grid. There is also a variant whereby the datum transformation is still implemented
as a separate step. Other technical changes to the RDNAPTRANS procedure were the intro
duction of an easier to use and more standard bilinear interpolation method and extension
of the domain over which the procedure is valid. These technical changes, apart from the
introduction of the new and improved NLGEO2018 quasigeoid and improved transformation
parameters, were carried out in such an way as to maintain consistency at the centimeter
level with previous RDNAPTRANS versions. The new NLGEO2018 quasigeoid represents a
real improvement for the height, but even so, consistency with the previous RDNAPTRANS for
the heights is still at the centimeter level.

The new version of the RDNAPTRANS procedure, called RDNAPTRANS™2018, is much
easier to implement than the RDNAPTRANS procedure of Figure 35.4. Also, the NTv2 proce
dure is a (relatively new) standard that is now supported by many coordinate transformation
and GIS software packages, including the PROJ generic coordinate transformation software.
This makes it possible to fully implement RDNAPTRANS™2018 in the PROJ transformation
software, that is also used by many GIS softwares, using a pipeline of smaller transformation
steps, each with its own +proj string (see Section 31.5).

Though many GIS packages support EPSG codes (see Section 31.4), and often use PROJ
as the underlying mechanism for coordinates transformations, users should nevertheless be
extremely careful with using the EPSG code EPSG:28992 for the Dutch RD coordinate system
in coordinates transformations. The software you are using may not (yet) support the latest
version of PROJ, have the correct parameters and/or downloaded the required correction grids.
Besides, for accurate coordinates transformations it is equally important to specify the exact
input coordinate system with the correct datum. The details do not matter for visualization
on a map or computer screen, but should users wish to exchange RD coordinates, it is ad
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Figure 35.6: Team of surveyors posing for the camera during the first precise leveling, in Dutch eerste
nauwkeurigheidswaterpassing, or Rijkshoogtemeting, probably in 1875 or 1876. The person with the white hat is
Cornelis Lely (18541929), who just graduated as a civil engineer in Delft (1875). Later, as minister of infrastruc
ture, he introduced the bill that resulted in the Zuiderzee werken, which comprised the construction of a 30 km
Afsluitdijk dike forming the IJselmeer lake, and the creation of the two western polders in the former Zuiderzee
sea. Photo taken from [93], see also [94]. Public Domain.

vised to use software that has been certified by the ‘Nederlandse Samenwerking Geodetische
Infrastructuur’ [89] (NSGI) and carries the RDNAPTRANS™ trademark.

Latitude and longitude in the ETRS89 reference frame is the default for the exchange of
geoinformation in Europe. However, in the Netherlands, users have the choice between ex
changing latitude and longitude in the ETRS89 reference frame, or exchanging RD coordinates,
but whenever transformation between ETRS89 and RD is needed, only software that support
the official RDNAPTRANS™should be used.

35.2. Amsterdam Ordnance Datum  Normaal Amsterdams Peil
(NAP)

The Amsterdam Ordnance Datum, in Dutch Normaal Amsterdams Peil (NAP), is the official
reference system for heights in the Netherlands. It is also the datum for the European Vertical
Reference System (EVRS).

35.2.1. Precise first order levelings
The history of the Dutch height datum goes back to a bolt installed in Amsterdam’s ship
building district as early as 1556. A century later, in 1682, eight stone datum points were
incorporated in the then new locks along the IJ waterway, defining a height datum that was
called Amsterdamse (Stadts)peyl. This datum was extended during the 18th and beginning of
the 19th Century to include the then Zuiderzee and the large rivers, and in 1818, King William
I decreed the use of the Amsterdams Peil (AP) as the general reference point for water levels.
At that time many different height datums were in use in the Netherlands which needed to be
connected through levelings.

A series of five (firstorder) precise leveling campaigns has been carried out to date. The
1st national precise leveling dates from the period 18751885, including 410 already exist
ing points and 2100 km of continuous leveling lines. See also Figure 35.6. The datum was

https://www.nsgi.nl
https://www.nsgi.nl
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Figure 35.7: Leveling lines of the 5th precise leveling in the Netherlands, 19961999 [91].

based on five remaining stone datum points in the Amsterdam locks. To distinguish the newly
derived heights from previous results the name Normaal Amsterdams Peil (NAP), the Ams
terdam Ordnance Datum, was introduced. During later periods, until the 1980’s, three more
precise first order levelings were carried out. It saw the installation of new underground ref
erence points in  presumably  stable geological strata throughout the Netherland, including
several posts (nulpalen) in the vicinity of tide gauges (water level gauges), the introduction
of hydrostatic leveling, and new routes, e.g. over the Afsluitdijk. On the other hand, many
existing points were lost, including all stone datum points in the Amsterdam locks. During
the 3rd precise leveling the level of this last stone datum point, which soon would be lost
due to construction work, was transferred to a new underground reference point on the Dam
Square in Amsterdam and assigned the height NAP +1.4278 m. This datum point is now in a
certain sense symbolic, as the height datum is nowadays defined based on the underground
reference points in geologically more stable locations.

In the 1990’s it became clear that motions in the Netherlands’ subterranean strata have a
major influence on the NAP grid. Geophysical models indicate that PostGlacial uplift of Scan
dinavia results in a slight tilting of the subterranean strata in the Netherlands, with the West of
the Netherlands sinking by approximately 3 cm per century. This was confirmed by analysis
of precise leveling measurements, but the uncertainty in the data was very high, and until
then the height of the underground datum points had never been adjusted. Because of policy
oriented issues, related to the protection from floods, more insight was needed into the height
changes of the underground datum points. For this reason the 5th precise leveling was carried
out between 19961999, see Figure 35.7. This was the first time that a combination of optical
and hydrostatic leveling, satellite positioning (GPS) and gravity measurements, were used.
It also include ice leveling measurements on the IJsselmeer and the Markermeer lakes. The
leveling measurements still constitute the basis for the primary NAP grid. The gravity mea
surements constituted the 2nd measurement epoch of the Dutch gravity grid. They served to
get an independent insight into subterranean movements. The GPS measurements served to
enhance the leveling net over greater distances, and to connect the leveled NAP heights to
ETRS89. The network of the 5th precise leveling was also connected to the German and Bel
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Figure 35.8: NAP (Amsterdam Ordnance Datum) ‘datum point’ at the Stopera, Amsterdam. Photo by M. Minder
houd  own work, July 2005, taken from Wikimedia Commons [9] under CC BY license.

gian networks. These connections play an important role in the establishment of a European
Vertical Reference System (EVRS) which uses the same ‘Amsterdam’ datum as the NAP grid.

In 1998 a NAP monument was created at the Amsterdam Stopera. This monument, de
signed and created by Louis van Gasteren and Kees van der Veer, consists of a NAP pillar
rising through the building with on top a bronze bolt a precisely the zero NAP level, two water
columns showing the current tide levels at IJmuiden and Vlissingen, and a third water column
showing the water level at the time of the 1953 Zeeland flood disaster. See Figure35.8.

Figure 35.9: Bronze NAP bolt, in a pillar (back row pillar, in the perspective of this photo under the ‘C’ of Civil
Engineering ...) , near the Bentrance of the Faculty of Civil Engineering and Geosciences building in Delft. The NAP
marker (peilmerk) number is 037E0612, and the given height in NAP is −0.359 m, thus below the NAP reference
surface.

35.2.2. NAP Benchmarks
The primary NAP grid is comprised of about 300 underground points and 70 posts (in Dutch:
nulpalen). The underground points are not accessible to the public, but provide an as stable as

https://commons.wikimedia.org/wiki/File:Nap_reference2.jpg
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possible basis for measurements of the secondary NAP grid. The secondary NAP grid consists
mainly of bronze bolts, with a head of between 20  25 mm in diameter, that are fitted to a
building or other structure with an appropriate stability. Figure 35.9 shows one such bronze
NAP bolt near the entrance of the building for Civil Engineering and Geosciences in Delft.

The heights of the bronze NAP bolts have been determined by leveling loops with an
average length of 2 km for each edge, with a precision better than 1 mm/km. A bronze bolt
is installed after every kilometer. There are about 35,000 of these bronze bolts (peilmerken)
installed in the Netherlands. The heights of the bolts are published by RWS in NAPinfo [95].
These bolts serve as the basis for height determination by consulting engineers, water boards,
municipalities, provinces, state, and other authorities, whereby one of these bolts can almost
always be found within a distance of 1 km.

GPS has not replaced leveling as much as it did with triangulation. There are two reasons
for this; (1) GPS height are not as accurate as the horizontal positions, (2) levelled (orthomet
ric) height and GPS (ellipsoidal) height are different things. See Chapter 33 for an explanation.
Therefore, the dense NAP grid will not be outdated by GPS in the foreseeable future, like it
did for the RD grid, and certainly not for applications requiring millimeter accuracy.

Figure 35.10: NLGEO2018 quasigeoid for the Netherlands on the left, with geoid height in [m] with respect
to the GRS80 ellipsoid in ETRS89, with on the right the differences with NLGEO2004. Clearly visible the much
larger domain over which the NLGEO2018 quasi–geoid is computed, though only the values between 2∘ −8∘ East
longitude and 50∘ − 56∘ North latitude are published. Image by Cornelis Slobbe [96].

35.3. Geoid models – NLGEO2004 and NLGEO2018
Although it is unlikely that GPS will replace leveling alltogether, GPS can be used to obtain
heights with an accuracy of about 12 cm using the RDNAPTRANS procedure, as outlined in
Figure 35.5. The transformation from ellipsoidal height to NAP height, and vice versa, requires
a correction for the geoid height.

Calculation of a geoid requires gravity measurements over  in principle  the entire Earth,
cf. Chapter 32. The larger scales depend mainly on satellite data, but for the highest precision
at regional and national scales gravity measurements in and around the area of interest are
needed.

The first Dutch geoid, with a relative precision of 1 decimeter, became available in 1985. In

https://www.rijkswaterstaat.nl/zakelijk/open-data/normaal-amsterdams-peil
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order to improve this geoid in the period of 19901994 some 13,000 relative gravity measure
ments were carried out in a grid of almost 8,000 points (1 point per 5 km2) in the Netherlands.
The resulting geoid, called the ‘De Min’ geoid, became available in 1996 and had a precision
of one to a few centimeters. This was the first accurate geoid model of the Netherlands and
was used by the original RDNAPTRANS procedure.

The geoid model was improved in 2004, resulting in the NLGEO2004 model, that is used
by RDNAPTRANS™2004 and RDNAPTRANS™2008. The improvements resulted from using
additional gravity measurements on Belgian and German territory and a set of 84 GPS / leveling
points from the 5th precise leveling to define a correction surface to the gravimetric geoid. The
NLGEO2004 model has a precision better than 1 cm in geoid height. The relative precision
for two points close together is approximately 3.5 mm, increasing to 5 mm for two points
separated by a distance of 50 km to approximately 7 mm for two points separated by a distance
of 120 km [91]. Therefore, the accuracy of GPS determined NAP heights using RDNAPTRANS
will largely depend on the precision of the GPS measurement.

In 2018 a new (quasi)geoid, called NLGEO2018, was computed [96]. Contrary to NL
GEO2004, it is based on a leastsquares approach using a parametrization of spherical radial
basis functions. This approach allowed to account for systematic errors in the gravity datasets,
enables proper error propagation, and the computation of the full variancecovariance matrix
of the resulting quasigeoid model. The model itself was computed over a much larger do
main than NLGEO2004 (it now includes the Dutch Exclusive Zone (EEZ) in the NorthSea)
and based on reprocessed datasets. Also new datasets have been used, including datasets
in Limburg, Belgium, Germany and shipboard and airborne gravimetry data over the North
Sea. Moreover, alongtrack geometric height anomaly differences from various satellite radar
altimeters were used. Since the data area was much larger than before it became neces
sary to apply so called terrain corrections, which aim to remove the highfrequency signals
in the data. Another improvement is that the removecomputerestore procedure relied on a
satelliteonly geopotential model obtained from GRACE and GOCE data. Over the land area of
the Netherlands, the precision of the NLGEO2018 gravimetric quasi–geoid is 0.7 cm standard
deviation. After application of the innovation function (which aims to reduce the differences
between the quasigeoid and height reference surface) the standard deviation reduces to 0.5
cm. For the NLGEO2004 gravimetric geoid, the precision was 1.3 cm. After application of the
socalled correction surface this number was 0.7 cm.

Figure 35.10 shows the NLGEO2018 quasigeoid and the differences with the NLGEO2004
geoid. Differences are in the range of 16 cm, with a systematic difference of about 3.5
cm. These differences are to be expected because the innovation function and corrector
surface are based on different GNSS and leveling datasets and the permanent tide is handled
differently. Also, when the NLGEO2018 is used in the RDNAPTRANS™2018 procedure part
of the differences will be resolved in the transformation parameters. Therefore, differences
in the height resulting from RDNAPTRANS versions 2004 and 2018 are much smaller, with a
maximum height difference of about 2.5 cm.

35.4. Lowest Astronomical Tide (LAT) model – NLLAT2018
The vertical datum for nautical maps in the Netherlands, and other countries around the North
Sea, is Lowest Astronomical Tide (LAT), see Section 33.4. Tide tables, as well as charted
depths and drying heights on nautical charts, are given relative to LAT. The depth of water, at
a given point and at a given time, is then calculated by adding the charted depth to the height
of the tide, or by subtracting the drying height from the height of the tide, with all heights
and depths given with respect to LAT.

The Hydrographic Service of the Royal Netherlands Navy (in Dutch: Dienst der Hydrografie
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Figure 35.11: NLLAT2018 with respect to the NLGEO2018 quasigeoid. Image by Cornelis Slobbe [96].

van de Koninklijke Marine) is responsible for the survey of the Netherlands Continental Shelf
(in Dutch: Nederlands Continentaal Plat). In hydrographic maps the chartered depth of the
seafloor is reported with respect to 0LAT.

The Dutch LAT model is called NLLAT2018. The LAT surface is always below the Dutch
NLGEO2018 quasigeoid, but the separation between the two is not constant and depends
on the location. NLLAT2018 has been computed using hydrological and meteorological mod
els, tidal water levels from 31 tidegauge, and the NLGEO2018 quasigeoid. The separation
between NLLAT2018 and NLGEO2018 is shown in Figure 35.11. The LAT reference surface,
0LAT, in NLLAT2018 is given with respect to the GRS80 ellipsoid in ETRS89, shown by 𝐿 in
Figure 33.4. It is available as correction grid with respect to the GRS80 ellipsoid in ETRS89
and as correction grid with respect to NLGEO2018. The accuracy of the LAT reference surface
is about 1 decimeter.

35.5. Exercises and worked examples
Below is a simple exercise on retrieving the height of a benchmark from the NAPdatabase.

Question 1 The heights of the NAP bolts are published by RWS in the NAPinfodatabase [95].
Look up the height of NAP bolt (peilmerk) 037E0612 that was shown in Figure 35.9. The po
sition of the bolt on the wall is given by xmuur (cm) and ymuur (cm) in the metadata
(Peilmerkinformatie). Ymuur is the height above the ground. This information is intended to
find the bolt more easily, but we can also do the reverse. What is the height of the pavement
(according to the metadata)?

Answer 1 From the NAPinfo website we find that the height of the bolt in NAP is 0.359 m
and that the bolt was last measured on 20180801. The xmuur is 25 cm, and ymuur is
20 cm. Thus the height of the pavement is 0.3590.20 ≈ 0.56 m, thus approximatelty 56
cm below NAP. Of course, this is not very accurate or particularly useful, the purpose of this
exercise is just to familiarize yourself with the NAPinfodatabase.

https://www.rijkswaterstaat.nl/zakelijk/open-data/normaal-amsterdams-peil
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36
Introduction

This part is intended to provide a quick tour of the subjects of maps and geographic infor
mation. It is not intended to provide a comprehensive coverage of all topics in depth — this
part provides just a first impression of the field of working with geospatial data in the context
of surveying and mapping. Many books have already been written on the subject, and surely
many more will be written still. This is with good reason: the scope of this subject is very
broad and begs indepth study.

As an aspiring engineer, you will hopefully see how important good practice is in cartogra
phy and in visual design in general. Communicating a message requires careful thoughts and
an appreciation of the tools we have available for the task. For the end users of maps, this
aspect of communication helps to understand the world around us.

Dutch historical perspective on mapping
Cartography has a very long and rich history, going back thousands of years. Cartography
is particularly relevant to the painting by the famous artist Johannes Vermeer (16321675)
[97], shown in Figure 36.1. Johannes Vermeer worked and lived in Delft, and is particularly
renowned for his masterly treatment and use of light in his work. The man in the painting,
acting as a geographer, most likely is the Dutch scientist Anthonie van Leeuwenhoek, a con
temporary of Vermeer, also born in Delft. Note the sea chart on the wall in the back, covering
the coasts of Europe, and the globe on the cupboard.

In the days of Vermeer — the Dutch Golden Age — Dutch cartographers, such as Abraham
Ortelius, Jacob van Deventer, Willem Blaeu and Lucas Waghenaer, to name a few, played
influential roles in the domain of mapping.

Overview of this part
While earlier parts of this book focussed on the acquisition of geospatial data and the process
ing of the measurements, this last part is on storing, working with and presenting geospatial
data. Recognizing that maps are valuable and effective tools for communicating spatial infor
mation to colleagues, customers and the public, the communication process is briefly outlined
in the next chapter. Next an overview of different types of maps is presented, and we proceed
to the art and skill of working with visual variables, the knowledge of which is applicable to a
wide range of presenting information in graphical form. The last chapter in this part is on Ge
ographic Information Systems (GIS), which allow us to store, access and maintain geospatial
data, as well as offer spatial analysis and interpretation functionality.
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Figure 36.1: Mapping in Delft: The Geographer, painted by Johannes Vermeer in 1669. Städel Museum  Frankfurt
am Main. Image taken from Wikimedia Commons [9]. Public Domain.

In three appendices, frequently used map services are presented: PDOK specifically for
the Netherlands, Open Street Map and Google Earth, in Appendix I, J and K respectively.

https://commons.wikimedia.org/wiki/File:J._VERMEER_-_El_ge%C3%B3grafo_(Museo_St%C3%A4del,_Fr%C3%A1ncfort_del_Meno,_1669).jpg


37
Communicating spatial information

Maps are tools for effectively communicating spatial information to a reader, organising it and
representing it using a visual medium. According to the International Cartographic Association
(ICA): ‘a map is a representation, normally to scale and on a flat medium, of a selection of
material or abstract features on, or in relation to, the surface of the Earth’ [98].

The final goal is to eventually observe and understand geospatial relationships, and analyze
spatial patterns. If the reader is unable to do so, then the map creator has failed. To this
end, there is a communication process that cartographers must follow. Observe Figure 37.1.
As we see there are four sequential stages, through which the cartographer’s message is
‘streamlined’, improving the design of the map.

Selection and generalization are the interim steps between the real world, and the map.
These are the processes which happen regardless, since maps will inevitably have less in
formation and detail than reality. Selection, the first process, involves deliberately choosing
which elements of reality are relevant to your message, and which elements can be left out.
In the second process, generalization, the level of detail in the map is reduced to a lower level,
such that the information is reasonably faithful to reality, while still being practical.

A picture is worth a thousand words, so examples of these two concepts will be demon
strated in Section 37.3.

37.1. What to communicate?
The modern day engineer has access to a vast amount of data, collected using methods
our predecessors never would have dreamed of. To start with, humanity has succeeded in
launching vehicles into the space outside the Earth’s atmosphere. We have Global Navigation

Figure 37.1: Cartographic communication process (diagram after [4])

337



338 37. Communicating spatial information

Figure 37.2: French civil engineer Charles Minard’s map of Napoleon Bonaparte’s Russian campaign is impressively
dense. The ‘Carte Figurative’ contains six types of data: the number of Napoleon’s troops; distance; temperature;
the latitude and longitude; direction of travel; and location relative to specific dates. Charles Joseph Minard, 1869
 Mapping Napoleon’s March. Carte figurative des pertes successives en hommes de l’Armée Française dans la
campagne de Russie 18121813. Dressée par M. Minard, Inspecteur Général des Ponts et Chaussées en retraite.
Image taken from Wikimedia Commons [9]. Public Domain.

Satellite Systems (GNSS) freely available, that allow for precise positioning nearly anywhere on
the globe. For a large engineering or scientific project, GNSSequipped platforms may be used
together with data collected using traditional methods such as tide gauges and leveling. This
information may then yet again be combined with a third dataset, like a geological map. Space
agencies such as ESA and NASA have launched dozens of imaging remote sensing satellites,
regularly capturing images of the Earth’s surface.

With such a broad range of data for an engineering project, which can involve hundreds of
people, it is now more important than ever for geospatial data to be visualized in a way that
is clear, concise, and complete.

As a case study, let us have a look at the chart in Figure 37.2 by civil engineer Charles Minard
(17811870) [99]. Minard is noted for his representation of numerical data on geographic
maps. The chart in Figure 37.2  created in 1869, after the event  shows the status and
surrounding conditions of Napoleon’s army throughout his 1812 invasion of Russia. The figure
is famously dense. It contains six types of data represented in two dimensions: but it may lack
some clarity. There is simply too much information, the annotations are all oriented differently,
and the legend is too small and poorly organised. Its compact form is great if you are the
messenger who needs to deliver the map on horseback, but not so great for the eventual
reader who has to read it by candlelight.

So there is a limit to the amount of information our soft squishy brains can absorb at once.
But there is also an immensely complex and rich world outside our front doors. So how do we
select key features of that world, and then somehow display it on a twodimensional computer
or smartphone screen or on a piece of paper?

Fortunately the modern day engineer(ing student) has powerful software at his or her
disposal, and an entire library of textbooks. With some key guidelines that are discussed in
this chapter, you can learn how to effectively communicate important geospatial data from
one squishy brain to another.

https://commons.wikimedia.org/wiki/File:Minard.png
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Figure 37.3: Inspired by the gridlike layout of Manhattan’s streets, Mondrian takes an abstract approach to
mapping. This is his subjective visualisation of a real neighborhood located in New York City. Broadway Boogie
Woogie (19421943) painted by Piet Mondrian (18721944). Museum of Modern Art (MoMA), Manhattan, New
York. Image taken from Wikimedia Commons [9]. Public Domain.

37.2. Modeling reality
The goal is to turn the world around us into a map or a model. As discussed in the introduction,
the world is complex. Because it is bumpy and uneven, and changing in time, reality is hard
to grasp and subjectively interpreted by humans. For impressionist art, the painter attempts
to convey a certain subjective interpretation to the viewer, a certain ‘model’ of the world if
you will. This is a visualization of the reality around the painter, but only the aspects that
the painter considered relevant  for example Piet Mondrian’s [100] impressionist painting
‘Broadway Boogie Woogie’ in Figure 37.3. The area around Broadway in Manhattan is reduced
(simplified) to a couple of basic geometric entities, like lines, squares and rectangles, in a few
elementary colors.

The approach to take for engineers is to define reality using objective models, so the
aspects of reality that we find relevant can become workable. Reality is then reduced to a
collection of points, lines, polygons/areas (geometric entities). In this respect, remember the
simple example of Figure 1.1, and the discussion with Figure 9.4, and also see Section 39.2
later on. So, for both the young engineer and Mondrian, we notice the concept that Paul
Klee (1920) described: ‘Art does not reproduce the visible, but rather makes it visible’. Swiss
artist Paul Klee is known for his paintings which straddled reality and the abstract [101]. A
cartographer or engineer has to make visible, out of a complex reality, the features which are
relevant to his or her message.

37.3. Selection and generalization
As future engineers, we love to simplify and generalize cases so that we can more easily see
what matters most for the problem we want to solve. But what is it that matters? What is our
message? As we saw in the previous section, we want to reduce and simplify the case to the
relevant entities and attributes, which comes to selection and generalization.

Take for example the map in Figure 37.4 on top, of the Rotterdam metro station network
[102]. The different tracks and stations are located throughout Rotterdam and its surrounding
areas, at different horizontal and vertical positions in this twodimensional view, with a topo
graphic map as background, cf. Section 38.1. The first metro network maps were created (of
the extensive network of the London Underground), geographically correct, in this style, and

https://commons.wikimedia.org/wiki/File:Piet_Mondrian,_1942_-_Broadway_Boogie_Woogie.jpg
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Figure 37.4: On top: geographic map of Rotterdam area with the Rotterdam Metro stations indicated, at bottom:
map of Rotterdam Metro network. This style of transport map (at bottom), originally designed by Harry Beck for
the London Underground, may have distorted the relative geographic positions of the individual stations in the
network (some stations may appear closer on the map, than they are in reality, and the other way around), but
has made it way easier to find the route from A to B, and in particular how to get there; this map comprises
information about links and transfers. On top, BRT Achtergrondkaart by Kadaster, taken from PDOK [59] under CC
BY 4.0 license. At bottom, own work by MichaBen, image taken from Wikimedia Commons [9], dated Nov. 16th,
2009. Public Domain.

https://www.pdok.nl/
https://commons.wikimedia.org/wiki/File:Metro_Rotterdam_future.svg
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they were confusing and difficult to interpret.
But, if your purpose is to inform travellers Bram and Neelie, who just need to get to the

other side of the city as fast as possible, you may need to simplify the map (generalization) and
omit some information (selection). It would be smart to focus on, and select the connections
between the lines of the metro network, because that is the most important thing to know
when you are on the metro: when to get off and change trains! That was exactly the type of
innovative thought that Harry Beck had when, in 1931, he, as an electrical engineer, redesigned
the London Underground map in a way that it resembled an electrical circuit diagram [103],
and which since has been used for many metro networks around the world, also for the metro
in Rotterdam, see Figure 37.4 at bottom. Rail tracks run horizontally, vertically or under 45
degrees. We leave it to the reader to decide whether it is a diagram or a map. Beck ignored
— to some extent — the geographic locations of the stations, and simply presented the user
with the information he or she needed. His rethinking of the map is still used today. Looking
at the two different maps (Figure 37.4 on top and at bottom), which are on the same subject,
we see that in the one inspired by Beck, the geometry of features may be much different,
but the topology in fact remains intact! The subject of topology is covered in Section 39.4.
Obviously, the map of Figure 37.4 at bottom does not have a uniform scale across the area. In
the diagram at bottom, nearly all stations are positioned equidistantly along the tracks, while
this is certainly not the case in reality.

Along the same lines, let us think of an imaginary, millimeteraccurate, map of the Nether
lands. There would be a staggering amount of detail: every leaf, cobblestone and roof tile
would be drawn out extremely precisely (by the way, if you have such an detailed map, there
are many organisations that would pay you very well for it!). The Netherlands covers a surface
area of about 41,500 km2. That is approximately 41.5 billion square meter. A typical laptop
screen, however, has a surface area of less than 0.1 m2. So if you want to create a map
of the Netherlands that can actually be viewed on a laptop screen, you would have to scale
down your imaginary, enormous map to make it usable. The leaves and cobblestones in your
original map will be several orders of magnitude smaller than a single pixel on your screen 
hence the necessity for generalization!

The issue of overlyabundant detail is demonstrated in the TOP25NLmap in Figure 37.5,
which is unusable at the smaller scale of the map at right, where a lower detaillevel would
be more practical. The need for choosing an appropriate level of generalisation is again made
obvious in Figure 37.6 at right, which uses the less detailed raster map TOP500NL; the map
at right no longer displays individual buildings in the Delft, it just shows the builtup area, and
only mainroads are kept. That is all. Hypothetically, you could construct a computer screen
the size of the Netherlands so you can display everything in full detail  but likely you see now
the practical benefit of generalization and scaling.

While looking at the Figures 37.5, 37.6, and also 37.7, you observe different levels of scale.
A scale of 1:𝑥 simply expresses that 1 unit in the map (e.g. 1 cm) corresponds to 𝑥 units in
reality (e.g. 𝑥 cm). For example, the map of Figure 37.5 at left, is displayed here at 1:25,000,
meaning that 1 cm in the map, corresponds to 250 m in the terrain. The scale is 1

𝑥 , meaning
that a smaller scale map is able to show less detail. A larger scale map can show much more
detail.

With dynamic maps visualized on a screen, rather than old days paper maps, the user can
smoothly, and virtually endlessly, zoomin and zoomout, see also Figure 37.10.

So simplification and generalization are unavoidable, and can make your map more read
able and effective. Your map is a medium for conveying the important data and features about
reality; what is relevant to the theme, and what is not? Generally, ‘less is more’. Keep in mind
however, as the often quoted Albert Einstein once said, ‘A problem [e.g. modeling reality]
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Figure 37.5: The city of Delft as mapped by TOP25NL, a topographic raster map created for a target scale of
1:25,000, containing detailed features such as roads, buildings and waterways. TOP25NL shown at a 1:25,000
scale, at left, and at (approx) a 1:165,000 scale, at right (stated scales refer to print on A4paper). In the map
at right, there is a far too high level of detail in relation to the scale. Basisregistratie Topografie (BRT) maps by
Kadaster, taken from PDOK [59] under CC BY 4.0 license.

Figure 37.6: The city of Delft as mapped by TOP25NL (left) and TOP500NL (right), both shown here at the same
scale, (approx) a 1:165,000 scale. Compared to TOP25NL, TOP500NL is produced for a target scale of 1:500,000
and includes far less detail, representing Delft by only the boundaries of its builtup area. Basisregistratie Topografie
(BRT) maps by Kadaster, taken from PDOK [59] under CC BY 4.0 license.

https://www.pdok.nl/
https://www.pdok.nl/
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Figure 37.7: Same source as Figure 37.6 at right (TOP500NL), but at a smaller scale (here 1:500,000). We see
that the lower level of detail is appropriate for this scale, as opposed to using TOP25NL. Basisregistratie Topografie
(BRT) map by Kadaster, taken from PDOK [59] under CC BY 4.0 license.

https://www.pdok.nl/
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Figure 37.8: Ptolemy’s world map, from his book The Geography written in the 15th century [105], originally
written by Claudius Ptolemy around 150 AD. Inset on lower right is a zoomin on Western Europe. In Ptolemy’s
map we see the world as it was known at the time by the Roman Empire, which, as we can see, did not include
the Americas, most of Africa and Asia, Oceania, and the Poles. Image taken from Wikimedia Commons [9], work
credited to Francesco di Antonio del Chierico (14501475). Public Domain.

should be made as simple as possible, but no simpler’.

37.4. History of cartography
It would be appropriate at this time to reflect on the history of cartography. It was not so long
ago that accurate maps were worth their weight in gold (well, more than their own weight
even!) to traders, explorers and military leaders. As such, cartography has a long and rich
history — of which we will highlight here just a few topics.

Claudius Ptolemaeus (c. AD 100  c. AD 170) was an accomplished mathematician, as
tronomer, and geographer who lived in Alexandria, which was in the Egyptian part of the
Roman empire at the time [104]. One of his main works is The Geography (Figure 37.8), a
compilation of geographical data known to him and his contemporaries in the Roman Empire
— roughly 8,000 different locations around the world [104]!

In the first part of The Geography Ptolemy discussed the data and methods he used —
and a key innovation was that he recorded latitudes and longitudes of locations on Earth for
the first time. He also devised two methods for representing these circles of latitude and
longitude on a flat map, using a grid of lines [104]. Ptolemy’s map was of course distorted,
not accurately representing the size and orientation of all features. This distortion stems from
the fact that the scale of landmasses and water bodies was determined in a very subjective
manner — mostly based on the experience of the explorer as he travelled across it. From our
own experience, we can recall how a few hours of time can seem very short when we are

https://commons.wikimedia.org/wiki/File:PtolemyWorldMap.jpg
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Figure 37.9: Mercator world map of 1569  ‘Nova et Aucta Orbis Terrae Descriptio ad Usum Navigantium Emendate
Accommodata’ [106]. This map gives an overview of the Earth that comes close to our modern day knowledge 
except for Australia, which was only suspected to exist as a continent, and Tasmania, which was entirely unknown
 until it was discovered by Dutch explorer Abel Tasman in 1642. The Western Europe part of the map is also
shown in more detail (at bottom). Image taken from Wikimedia Commons [9]. Public Domain.

https://commons.wikimedia.org/wiki/File:Mercator_1569.png
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Figure 37.10: Map supported directions to your destination by means of Google Maps on your smartphone.

having fun, but very long when we are bored without entertainment. Nevertheless his map
was a relatively clear and detailed illustration of the Roman Empire at the time.

Another main character, whose name you might encounter often, is Flemish cartographer
and geographer Gerardus Mercator (1512  1594). Mercator is most famous for the world map
he created based on the projection system he proposed — the Mercator projection — which he
introduced to the world in 1569 [107], see the map in Figure 37.9. Its legend contains various
texts: copyright claims, a message of thanks to his employer, and explanations of concepts.
The Mercator projection is a a conformal map projection, meaning that it preserves the angle
of intersection of any two curves, see Chapter 30.

The latitude lines are equally spaced, straight, and parallel, while the longitudinal lines are
parallel and straight, but at increasingly larger distances closer to the poles. With this projec
tion, any straight line in the map is a line of constant bearing on the globe, see Section 30.4.2
— this was very useful for sailors, who could then navigate a straightline course. Hence
the name of the map Nova et Aucta Orbis Terrae Descriptio ad Usum Navigantium Emendate
Accommodata, which is Renaissance Latin for ‘New and more complete representation of the
terrestrial globe properly adapted for use in navigation’ [106]. Mercator’s map forms the basis
of navigation until this very day — a milestone in the history of mapping and navigation.

Speaking of navigation, if we skip ahead a couple of hundred years, we find ourselves in
the 21st century. Navigation and cartography have made great advances, and have become
freely accessible to anyone with an Internet connection. In many countries, the geographic co
ordinates of nearly every building is known, and navigation is a breeze  like finding the fastest
route to your destination using your smartphone (Figure 37.10) and based on GPS satellite
navigation. Cartography has extended to animated and interactive maps, with personalized
content.

There is much more to say about the rich and vast history of cartography, but the scope
of this book is limited to this brief section. The interested reader is referred to e.g. a series
of six volumes by Harley and Woodward: [108], [109], [110], [111], [112], and [113].



38
Maps

As we have seen in the previous chapter, a map is a model, or visualization of reality, in our
case, specifically the Earth’s surface. Turning a spherical Earth into a flat piece of paper or
screen, is covered in Chapter 30 on map projections.

In this chapter we present a concise overview of both topographic maps and thematic
maps. Topographic maps are an indispensable resource of geographic information for build
ing and construction, during the design, deployment, and maintenance of civil engineering
projects. Thematic maps are an often used tool to communicate the results of a survey or
enquiry, or the results of an impact study to customers and the public.

The second part of this chapter is devoted to guidelines for working with visual variables,
and eventually producing a proper map — a map which is clear, attractive and well under
standable, i.e. which serves its purpose of transferring the right message.

38.1. Topographic maps
One of the most commonly seen types of maps is the topographic map. The distinctive fea
ture of a topographic map is that it shows the natural shape of the Earth’s surface, and its
topography. The focus is on geometry, with typically both natural and manmade features
being shown in largescale detail. A topographic map is a general purpose map, and thereby
also often used as a background for other types of maps.

In this section we will cover a few different topographic maps which are (freely) available
online, to give you an idea of the cartographic resources that exist out there.

38.1.1. Basisregistratie Grootschalig Topografie (BGT)
The Basisregistratie Grootschalige Topografie (BGT) is a detailed, largescale digital basemap
of the Netherlands. It is a key tool for civil engineering projects, as it maps the location of all
permanent physical objects such as buildings, roads, water bodies, railway tracks, and (agri
cultural) plots of land — that is topography. A sample screenshot can be seen in Figure 38.1,
and the data can be downloaded in both vector and raster format from the PDOK website [59]
(see Appendix I).

The BGT has a long list of applications. It can answer questions like: What is the shape
and direction of this sidewalk? What objects are located around the building of interest? As
you can imagine, having an overview of a site by means of a basemap is exceptionally useful
when carrying out building and construction works.
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Figure 38.1: Sample of the Basisregistratie Grootschalige Topografie (BGT) Achtergrondkaart, for the area around
the Stevinweg in Delft. In this map you can view every individual object registered in the BGT, even the small plot
of your grass in front of your house, managed by the government, and obtain administrative information about
the object. BGT Achtergrondkaart by Kadaster, taken from PDOK [59] under CC BY 4.0 license.

Figure 38.2: Sample of TOP10NL map for the area (of Figure 38.1), of about 330 m x 550 m, around the Stevinweg
in Delft. At left the TOP10NLmap, and at right, much similar, the BRT Achtergrondkaart (BRTA); they share the
same geometry. Basisregistratie Topografie (BRT) by Kadaster, taken from PDOK [59] under CC BY 4.0 license.

38.1.2. Basisregistratie Topografie (BRT)  TOP10NL
The Dutch Kadaster (the Netherlands’ Cadastre, Land Registry and Mapping Agency) publishes
TOP10NL, the digital topographical base map of the Netherlands. It is the most detailed
topographic product within what is known as the Basisregistratie Topografie (BRT) — and
useful for creating maps with scales in the range between 1:5000 and 1:25.000. The target
scale of this map, obviously is 1:10.000. A sample can be seen in Figure 38.2, and be compared
with the BGTmap in Figure 38.1, the latter showing even a higher level of detail.

The TOP10NL is produced in Geography Markup Language (GML) format, a common format
for geospatial data. You can download map sheets freely from the PDOK website [59], see
also Appendix I, and use AutoCAD or a DWG viewer, or QGIS [5], for these maps.

The TOP25NL and TOP500NL maps of the Basisregistratie Topografie (BRT) were shown
already in Section 37.3.

38.1.3. Underground topography
With civil engineering projects and constructionworks, an important part of the infrastructure
is located underground. By the WION (Wet Informatieuitwisseling Ondergrondse Netwerken),
and from July 2018 on, covering also ’bovengrondse netten’ (WIBON), cable and pipeline
infrastructure needs to be mapped. One can think of telecommunication infrastructure, and
public utilities like gas, water, electricity and sewage, as well as privately owned and operated
pipelineinfrastructure (e.g. for petrochemical industry). The registration and mapping, on a

https://www.pdok.nl/
https://www.pdok.nl/
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Figure 38.3: Example of underground infrastructure map: fragment of sewerage network around the Reeverweg
in Harfsen. Image courtesy of Stichting RIONED [114], dated August 16th, 2018.

scale of 1:500, is organized in the Netherlands through the Kabels en Leidingen Informatie
Centrum (KLIC) hosted by the Dutch Cadastre. Figure 38.3 shows an example of an under
ground infrastructure map. The purple line in the middle of the street is the combined sewer,
for both storm water and sanitary/wastewater. The purple squares are manholes, and the
purple circles are storm drains in the pavement or house lateral connections.

38.1.4. Actueel Hoogtebestand Nederland (AHN)

The Netherlands has an incredibly detailed and uptodate raster dataset for heights with a
horizontal grid resolution up to 0.5 meters, known as the Actueel Hoogtebestand Nederland
(AHN). Chapter 22 mentions that the Actueel Hoogtebestand Nederland (AHN) has been col
lected with airborne laser scanning. The AHN3 has been flown from 2014 to 2019, for all of
the country. The result is a Digital Elevation Model (DEM) of all of the Netherlands. AHN3 can
be downloaded per tile from PDOK [59], see also Appendix I.

The elevations pertain to the terrain ground level (‘maaiveld’), buildings and infrastructure,
in the socalled filtered version. In the unfiltered version also vegetation is present. The
elevations in this model have a precision of about 5 cm (standard deviation), with at most a
5 cm of systematic offset. An example of the TU Delft campus area is shown in Figure 38.4.

38.1.5. 3D Maps

Traditionally, topographic maps have been twodimensional. Now, with threedimensional
surface model data available, the visualization on a twodimensional map or screen, poses
challenges. One can use shadoweffects to indicate relief (shading), or use perspective view
ing, see Figure 38.5. This is often done when illustrating Digital Terrain Models (DTM) and
Digital Surface Models (DSM) to make them look more realistic. The different Level of Details
(LODs), as conceptual model of buildings, are shown in Figure 38.6.

https://www.riool.net/
http://www.klic.nl/
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Figure 38.4: Example of Actueel Hoogtebestand Nederland (AHN3), unfiltered (with vegetation and buildings
present)  Digital Surface Model (DSM), shaded relief. The height (in NAP) per pixel (0.5 m x 0.5 m) is shown in
colorscale from blue through green and yellow to red. The image shows a detailed scene of the TU Delft campus,
with the Aula and library on top. AHN by Rijkswaterstaat; data retrieved from PDOK [59] under CC0 license.

Figure 38.5: View on TU Delft campus around Stevinweg from 3D BAG 2.0 service; Level of Detail (LOD) models
reconstructed from buildings in Basisregistratie Adressen en Gebouwen (BAG) and AHN3 point clouds. Shown is
LOD 2.2 on BRT Achtergrondkaart. Image taken from 3D BAG by 3D Geoinformation Research group at TU Delft,
under CC BY 4.0 license. Also available as 3D Basisvoorziening by Kadaster through PDOK [59].

Figure 38.6: Level of Detail (LOD) for visualization of buildings and Digital Surface Models (DSM) in 3D maps,
image after [115].

https://www.ahn.nl/
https://www.pdok.nl/
https://www.3dbag.nl/
https://www.pdok.nl/
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Figure 38.7: Chloropleth map of yearly rainfall in the Netherlands, per municipality, as an average over 1981
2010. At left, using an appropriate visual variable (value/lightness), the darker the bluecolor, the more intense
the phenomenon (rainfall), and at right, using an inappropriate visual variable, the use of different colors (hue)
is not suited to present hierarchy or rank  why would red imply less rainfall than blue, or the other way around?
Municipality geometry data from GADM maps and data [118] and precipitation data from KNMI Dataplatform
(KDP) [119] as Open Data CC0 1.0.

38.2. Thematic maps
Thematic maps, as opposed to general purpose topographic maps, focus on specific subjects,
aiming to show a particular theme linked to a geographic area of interest. Themes can be land
cover, traffic density, flooding risk, and for instance income, age and religion as census data,
and many, many more. The two most common types of thematic maps are the choropleth
map and the chorochromatic map.

38.2.1. Choropleth map
Chloropleth maps are used to show statistical information that is aggregated by geographic
area. It was described by American geographer John Kirtland Wright to mean ‘quantity in
area’ [116]. Additionally, a hint to the meaning of choloropleth can be found in its Greek root
words, choros (meaning ‘area’) and plethos (‘value’) [117].

The magnitude of the variable of interest (attribute) may be represented using the satura
tion of a color or the lightness/darkness (value) of a color, or just shades of gray in a black and
white figure. The differences in colordepth or darkness denote differences in the intensity
of a phenomenon, for instance the amount of rainfall in millimeter over a period of one year
in Figure 38.7 at left (created from spatially interpolated precipitation measurements). This
allows the viewer to easily see how the phenomenon varies spatially; which areas do get most
percipitation, and which areas are relatively dry?

Also Figures 38.11 and 38.12 later on, show choropleth maps.

38.2.2. Chorochromatic map
For qualitative data, as opposed to statistical data, we use another type of thematic map:
a chorochromatic map. It is composed of the Greek root words choros (meaning ‘area’, as
we just saw) and chroma (‘color’) [117]. The original meaning was to render nominal values
for areas by using different colors (hue). As we can see in Figure 38.8, it is very useful for
mapping descriptive data.

Using different colors or patterns, the distribution of a qualitative characteristic over a
region is illustrated. Note that since chorochromatic maps visualize qualitative data, it is very

http://www.gadm.org/
https://www.knmi.nl/
https://www.knmi.nl/
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Figure 38.8: Chorochromatic map: geological map of the Armorican Massif in France (Bretagne). Map by Woud
loper, own work, January 2009, taken from Wikimedia Commons [9] under CC BYSA 3.0 license.

important that the choice of colors or patterns do not suggest a hierarchy or order of the
classes, like quaternary, jurassic and cambrian in Figure 38.8. They imply just different types
of sedimentary rocks, and cannot be mutually compared. Cambrian is neither less, nor more
important than quaternary — it is just different from.

38.2.3. Types of map data
Map data are stored in a Geographic Information System (GIS), see Chapter 39, and prior
to storing features and their attributes, it is worth thinking about how to ‘code’ them. An
attribute can be defined by a character string (e.g. a streetname), or a number (e.g. 42),
with the latter being an integer or real (float) number.

Another consideration is what is known as the ‘levels of measurement’ scale. This classi
fication was developed by an American psychologist, Stanley S. Stevens, and it can be useful
to conceptualize the differences between types of data values, in order to handle them in
mapmaking. To clarify, Table 38.1 shows an example of data from the results of a marathon
race, with the different types of data values indicated.

The four ‘levels’ are [4]:

• Nominal data (nominal as in ‘to name’) identifies or categorises data items. There is
no indication of a relative value or ranking. Can we say that the name ‘Caroline’ is
better than ‘Dennis’? ‘No’! Its purpose is only to identify, like a name, or a telephone
number. An example of unique labels are parcelnumbers as used for land registration,
e.g. ‘DEL00D429’ for parcel number 429 in section D of Delft. Examples of categories,
or classes of road surface are tarmac, concrete, brick and cobblestone. The nominal
data type is typically coded as a character string.

• Ordinal (as in ‘to order’) does indicate a type of order ranking. The intervals between
ranks (such as ‘great’ or ‘good’) are not known, but the order is known (‘great’ is better

https://commons.wikimedia.org/wiki/File:Geologic_map_Armorican_Massif_EN.svg
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Nominal Ordinal Interval Ratio

participant ranking finish time race time

Mick 1 11:10 2:30
Tycho 2 11:15 2:35
Bob 3 11:17 2:37
. . . .
. . . .

Patrick 450 19:30 10:50

Table 38.1: An example of the four levels of measurement of data, using data from a marathon race as an example
(after [4]).

or more than ‘good’). This data type is often coded with characters (and you cannot
apply math to them). Only relational operators as ‘<’, ‘>’, and ‘=’ apply to them.

• Interval data, is purely numerical. The difference, or ‘interval’ between numbers is
meaningful (arithmetic operations like ‘+’ and ‘−’), but there is no meaning to dividing
or multiplying the numbers. As an example, we can consider temperature data. 30∘
Celsius is 10∘ warmer than 20∘ Celsius: an interval of 10∘. However, we cannot say that
30∘ is twice as warm as 15∘, because interval data does not make sense when multiplied,
as it does not start at some ‘true zero’ value. It is the difference that matters (and that
can be quantified).

• Ratio data, however, does have an absolute zero, unlike interval data. Think of time
spent, height, and weight. It makes sense to say that a race time of 4 hours, is twice
the race time of 2 hours. Addition, subtraction, multiplication and division of ratio val
ues make sense (‘+’, ‘−’, ‘×’, and ‘∶’). Other examples of ratio data include the price
of realestate (in Euros), the amount of rainfall (in mm/year) and the percentage of
unemployment (in percent). Obviously, ratio data is numerical.

38.2.4. Other types of thematic maps
A contour plot is a technique for representing the variation of an attribute over a geographical
area of interest. Over a 2D map, we draw contour lines, also referred to as isolines, which
each connect locations with the same data value. Figure 38.9 shows a contour map of rainfall
data, based on measurements of over 300 meteostations at discrete locations throughout the
Netherlands, interpolated in a raster to cover all of the country. In Figure 38.7, the interpolated
raster map was aggregated to municipality areas (using the mean value).

38.3. Cartographic rules and guidelines
How to design a good map yourself? And, are there any useful guidelines for doing this?
In this section we present a few basic principles of visualization. This field even touches on
perception psychology.

38.3.1. Principles of information visualisation (Bertin)
In this section we discuss a crucial aspect of cartography: how do we encode information into
visual variables and geometric shapes, and how does the reader decode that information? For
this reason, Jacques Bertin [120] proposed a systematic set of rules for cartography. Part of
his system can be seen in the annotated table of Figure 38.10.
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Figure 38.9: Annual precipitation interpolated over the Netherlands (average over 19812010) shown as a contour
map. Precipitation data from KNMI Dataplatform (KDP) [119] as Open Data CC0 1.0.

Figure 38.10: Table of qualitative and quantitative visual variables, listed vertically, for three geometric entities in
maps: points, lines and areas, listed horizontally. This table can help you select an appropriate visual variable for
your map (after [120]).

https://www.knmi.nl/
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As we can see, many different types of visual variables exist and can be used, and de
pending on their purpose they may be more, or less appropriate. The first four rows are visual
variables best suited for qualitative data (descriptive data, e.g. nationality, and land cover),
whereas the remaining three are more appropriate for mapping quantitative data (data that
can be quantified in numbers). Remember that in Section 38.2.3, we presented different types
of data values! Things should come together now.

In the sequel, some examples will demonstrate how Bertin’s visual variables are used in
practice  and also abused, leading to unclear and misleading figures.

One example of a potentially misleading figure was shown already in Figure 38.7 at right.
The visual variable ‘hue’ cannot be used to present quantitative data.

The item ‘value’ (or similarly ‘lightness’) shows that differences in gray (ranging from black
to white) show differences in density, e.g. the percentage of unemployed people (ratio data
value, hence quantitative). An area which is darker is associated with a higher percentage of
unemployment. There clearly is a hierarchy or order. When correctly applied, percentages or
densities that are twice as high are represented by a gray value that is twice as dark.

Though, it is not always that easy — one should be aware of potential ambiguous inter
pretation of the map. Indeed, generally, the darker the gray values, the more intense or the
higher the densities of the phenomenon. But, another interpretation could be that the darker
the area tints, the less favourable the conditions of the phenomenon are. Then it might be
difficult to combine these two rules and interpretations. Literacy might be taken as an ex
ample: to render increasing literacy percentages on a global map through tints that increase
in value maybe interpreted as the less favourable condition (illiteracy) being represented by
higher tints [117].

In Figure 38.10 we use the HSV (Hue, Saturation, Value) color model (or similarly HSL,
with L for Lightness), as an alternative to the wellknown RedGreenBlue (RGB) color model.
It describes ‘colors’ by using three variables. Individually, each of these can be used as a
visual variable [120], with hue being appropriate for qualitative data, and saturation and value
(lightness) for quantitative data.

When describing sediment rock type, we use descriptive words: ‘jurassic’, ‘cambrian’, and
‘quartenary’, etc. There is no particular numerical value to these classifications, and therefore
no hierarchy either. Therefore a qualitative visual variable should be used to illustrate the data,
as was done in Figure 38.8, namely hue! In this map, we can immediately and clearly see the
distribution of sediment rock type over the area. In this context one can think also of a land
cover map and use appropriate colors: when the reader sees blue areas on the map, they
are quick to associate it with water — hence a good choice to use the color blue to represent
water bodies, and not for grassland, for instance.

For quantitative data, it is also appropriate to use colors as a visual variable. However, it
must be done differently than in the previous example of Figure 38.8. For the quantitative
data in Figure 38.11 at right, using hue as a visual variable leads to an extremely confusing
rainbow of polygons. Why are the more populated areas yellow, and the less populated ones
blue or red?

So, this is a good example of a poor choice of visual variables! When displaying quantitative
data, variations in color value (lightness) and color saturation allow the reader to quickly and
clearly see how the phenomenon is spatially distributed, and which areas have the higher
magnitude. This is what we see in Figure 38.11 at left, where color value/lightness is used as
a visual variable.

As we have seen, the same dataset can look very differently depending on the choice of
visual variables. It can sometimes be misleading, by implying a certain hierarchy in the data
categories where there is not one.



356 38. Maps

Figure 38.11: Population density in the Netherlands, per municipality, visualised using two different visual variables,
namely value and hue, resulting in two different color maps. At left a clear and indicative choice of color: value
(lightness), and at right a poor map with a confusing choice of color: hue. Data from CBS Wijken en Buurten [121],
obtained through PDOK [59] as Open Data CC0 1.0, Public Domain.

Knowing that a biased map can strongly influence the viewer, it is important to realize that
the cartographer’s role is primarily to inform, not to influence!

38.3.2. Good practice
Data can be powerful, but they have no ‘wind in their sails’ until they get well visualized or
otherwise presented. In this section some of the key points are presented to creating a good
map that communicates well. This section by no means provides a full guide to create a good
map — just a couple of major guidelines are given.

Consider the feature type you would like to map, cf. Section 39.2, and choose an ap
propriate mapping technique for the data type in Section 38.2.3, following the guidelines in
Figure 38.10.

Keep in mind that using absolute data over percentages may give a skewed impression of
the message you want to convey, in this respect also compare Figure 38.11 at left, showing
density (inhabitants per square kilometer), and Figure 38.12 at right, showing absolute counts
(number of inhabitants). An other example would be the absolute count of unemployed people
versus percentage of unemployed people (of the total working population).

The legend should be clear, and also specify the data shown, as well as mention the source
of the data. The legend may also contain a date, and mention the coordinate reference system.
Make sure to use text with a proper font. The map should contain a North arrow for spatial
orientation, and a scalebar for proper reference.

The layout, and relative sizes of the different elements of the map (like title, legend, etc.)
should be arranged such that first and foremost the reader’s attention is drawn to the data
(‘what is the message?’). Do not overload the reader with information, focus on your message.
Balance the shape and size of elements in your map. Distribute the elements of the map evenly
(geographic map itself, legend, title, further annotation). Do not leave a large white unused
space somewhere. Does the image look good overall?

Keep in mind that the use of (some of the) colors can attract more attention than it de
serves, so balance colorusage. A map is a model of reality, and hence implies simplifications.

https://www.pdok.nl/
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Figure 38.12: Population map of the Netherlands, with number of inhabitants per municipality. At left shown with
equalinterval classes, and at right with quantilebased classes. At left, there are five classes, each covering an
interval of 200.000 inhabitants. At right, the class boundaries are certainly not equidistant, but chosen such that
each class covers (about) the same number of municipalities (the ‘data points’ are equally distributed over the five
classes for the visualization). Data from CBS Wijken en Buurten [121], obtained through PDOK [59] as Open Data
CC0 1.0, Public Domain.

The attribute you would like to present should be categorized, or classified into a limited num
ber of categories or classes. One can think of a limited number of different rock types, as in
the map of Figure 38.8, rather than showing 238 different ones …. A quantitative attribute
may cover, as a real number, an infinite amount of different values, and this needs to be
reduced to a limited number of bins, or classes for a clear interpretation, see the map of Fig
ure 38.7. There shall be not too few, nor too many categories or classes. With quantitative
data, generally five or six classes suffice.

There are several, or even many ways to set the classes. One can use equal intervals, just
by cutting the minimummaximum range of the attribute into five or six equal length classes,
as used in Figure 38.12 at left, but this simple choice may not always be the best choice. An
alternative is to use quantiles to set the classboundaries. In this way, the total amount of data
is distributed evenly over the classes. Each class contains the same number of ‘data points’.
One could first create a histogram of the data, to get a first impression of the distribution of
the data.

Figure 38.12 shows a population map of the Netherlands, based on data of the Centraal
Bureau voor de Statistiek (CBS), [121]. On the left with (default) equal interval on the popu
lation count, which results in pretty much a ‘flat’ map — there is not much to see, only the real
big cities stand out, and for the rest the Netherlands is ‘pretty empty’. At right with quantile
based classes, in order to emphasize the spatial variation of population in the Netherlands,
also across the country. The two maps give a really different impression, and the only cause
for this lies in a different definition of the classes for the population attribute. Showing popu
lation density as in Figure 38.11, will actually give a more trustworthy impression, instead of
absolute values like in Figure 38.12. Showing absolute counts rather than density may distort
or obscure the message. In the map of Figure 38.12 at right, you see high population values
also in the provinces of Friesland, Groningen and Drenthe, whereas we do not see high pop
ulation density values there in Figure 38.11 at left. The municipalities do not all have equal

https://www.pdok.nl/
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size (area) and this may corrupt the message of the map. Large area municipalities may have
a reasonable number of inhabitants, but due to the large area, the density is still low, and, as
they cover a large area, their fairly large absolute counts may visually dominate the map of
Figure 38.12 at right. The question again is: what is your message?



39
Geographic Information System

(GIS)

Geographic Information Systems (GIS) are everywhere. You may not have realized, but likely
you already often used a GIS. You are strolling through town and consulting a service or app
on your smartphone, in order to find the nearest pizzarestaurant. A GIS can answer questions
like ‘What is located here?’, and ‘Where is the TU Delft Aula (or another object of interest)?’,
and also ‘Where is the nearest ATM?’. As soon as spatial, geographic information comes into
play, a GIS enters the scene.

A GIS may be a valuable tool in analyzing the noise zones around a newly built track
of railway. Townplanners may use a GIS, based on satellite images, to see where informal
settlements are, and consequently to help in planning infrastructure in big cities for instance
in Africa, Asia and South America. A GIS is an indispensable ingredient of a digital twin of
builtarea, a town or a city. Rescueteams may use a GIS, with a recent satellite image, to see
where impacted areas are of a natural disaster, such as a flood, and where people may need
rescueing. And, there are many, many more uses.

This chapter provides a brief introduction to the subject of Geographic Information Sys
tems.

39.1. Geographic information: early trace
In presenting the early traces of Geographic Information Systems, often the example of John
Snow is brought up (also in [4]). John Snow was an English physician, and considered to be
one of the fathers of modern epidemiology [122]. He traced the source of a cholera outbreak
in the Sohodistrict in London, in 1854 [123]. How did he do this? Exactly, by using geographic
information in his analyses!

Snow identified the source of the outbreak of this epidemy as the public water pump in
Broad Street, see Figure 39.1. All pumps are indicated on this map by a rectangle in red, and
the one on Broad Street, in the middle of the map, also by the arrow. The spatial analysis
Snow carried out was convincing enough to persuade the local council to disable this well
pump by removing its handle in order to end the outbreak of this disease.

Snow indicated the houses with occurrences of cholera. Rather than producing an admin
istrative list or table (with addresses of the patients and fatalities), he marked them in black
on the map in Figure 39.1. And soon a cluster of the occurrences appeared (of black houses).
Snow concluded that nearly all deaths had taken place within a short distance of the pump in
Broad Street. He also observed that there had been no particular outbreak or prevalence of

359
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Figure 39.1: Original map of Sohodistrict in London made by John Snow in 1854, with ‘a scale of 30 inches to a
mile’. Cholera cases, from 19th August to 30th September 1854, are highlighted in black. The red rectangles have
been added, in order to clearly indicate the locations of the pumps in this area. Published by C.F. Cheffins, Lith,
Southhampton Buildings, London, England, 1854. On the Mode of Communication of Cholera, by John Snow [123].
Image taken from Wikimedia Commons [9]. Public Domain.

https://commons.wikimedia.org/wiki/File:Snow-cholera-map-1.jpg
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Figure 39.2: Zoomin on raster data (of Figure 25.10): the individual pixels can be seen, representing each a 10
x 10 meter area in the terrain.

cholera in this part of London, except among the persons who were in the habit of drinking
the water of the abovementioned pump well.

Snow was right in pointing to the water of the pump as the culprit, though the sanitary
mechanism by which the disease was transmitted (bacteria in the water) was not fully under
stood yet, at that time.

39.2. Vector and raster data
There are two fundamental data models for recording and storing geographical data in a GIS:
vector data and raster data.

For a description in terms of vector data, one uses points, lines and areas to model the real
world. The basic entity in vector data is a point, of which the position coordinate pair (𝑥, 𝑦), or
the coordinate triplet (𝑋, 𝑌, 𝑍) in 3D, is stored. A line is represented by its start and endpoint,
and an area in its turn by a series of linesegments. GPSpositioning and tachymetry with a
total station naturally deliver vector data. Also stereo photogrammetric measurements result
in vector data (cf. Chapter 19).

For a description in terms of raster data, the whole area of interest is divided in a regular
grid, and a value, of for instance the average or total amount of Sunlight reflected to our
sensor, in a specific optical frequency band, is stored for each cell. The cell or pixel is the
basic geometric entity with raster data. Remote sensing naturally delivers raster data (think
of satellite imagery and (digital) aerial photography), see Figure 25.1. The example of Fig
ure 25.10, on the Normalized Difference Vegetation Index (NDVI), is also based on remote
sensing data (from the Sentinel2 satellite mission). Zoomingin a lot on this image, on the
small harbor and the residential area, yields Figure 39.2, which is a bit ‘blocky’; we can ob
serve the individual pixels, which, in this case, correspond to a 10 x 10 meter footprint on
the Earth’s surface.

39.2.1. Vector data
Identifiable objects on the Earth’s surface are referred to as features. One can think of build
ings, roads, rivers, orchards and islands. Points can be used to represent objects like a railway
station or a residential house. Lines can be used to represent linear features such as roads,
railways and rivers, see Figure 39.3. And areas can be used to represent parcels, lakes and
forests.
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Figure 39.3: A (curved) feature on the Earth’s surface, like a river, is captured (digitized) by a series of straightline
segments, delivering vectordata.

Figure 39.4: Small example of a road network stored as vector data. Both sides of the road are mapped and road
segments are actually stored as closed polygons (areas) in this largescale topographic map. On the left a 750
meter wide area of the road network is shown, while the ‘zoomin’ on the right covers only 100 meter. One can
clearly see from the curved road that the geometry of the road is described by a series of points, connected by
straight lines. Basisregistratie Topografie (BRT) TOP10NL data by Kadaster, taken from PDOK [59] under CC BY
4.0 license.

Modeling a curved road by straight line segments implies an approximation, see Fig
ure 39.4. The graph at left shows a part of a road network in a rural area along a highway
(taken from the TOP10NLmap), and the graph at right shows a ’zoomin’. The curved road
gets slightly jagged.

With vector data the point is the basic geometric entity. A linear feature, such as a river,
is described by a polyline (a series of vectors or line segments), as shown in Figure 39.3, and
in principle by just the series of vertices (as start and endpoints of the line segments). Two
successive vertices are connected by a socalled edge. The edges together form the polyline.
When a polyline is used to describe an area, it becomes an (enclosed) polygon (and the last
vertex is equal to the first one). The elementary geometric entities are shown in Figure 39.5.
In threedimensional mapping one may add the tetrahedron as a volume element, which is
a polyhedron with four sides (four ‘triangular faces’); it has four corners (vertices) and six
straight edges. Maps on flat paper or screen are twodimensional, though a third dimension
can be added by means of perspective view. An actual threedimensional map or model can
be realized by means of a maquette.

A raster map, representing for instance terrain elevation, continously over the area of
interest, can be converted into a vector map, by means of contouring. The value range in
the raster map is divided into a set of distinct classes. Linear features are created as the
boundaries between classes (such that pixels with a larger value are on one side, and pixels
with a lower value on the other). The result is a map with polygons and polylines as socalled
isolines, connecting points with equal value (e.g. elevation or amount of rainfall), see also
Figure 38.9.

https://www.pdok.nl/
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Figure 39.5: Vector based data: point, polyline, and polygon.

Figure 39.6: A (curved) feature on the Earth’s surface, like a river, is captured (digitized) by means of a set of
pixels, delivering rasterdata.

39.2.2. Raster data
With raster data the area of interest is divided in a regular grid, and the data stored can be
regarded as a matrix with rows and columns, and each element representing the value for
that small area. The value represents the condition of that specific part of the Earth’s surface
and can be the amount of Sunlight reflected to our sensor by that area, or the (average)
height of the terrain surface of that area. The matrix is a rectangular array of cells or pixels
(short for picture elements), see Figure 39.6.

The entire area is covered, so ‘there is a value everywhere’. Hence, raster data are par
ticularly suited when the attribute of interest (e.g. elevation of the terrain surface, amount of
vegetation, or concentration nitrogen dioxide NO2 in the air) is continuous in space.

When original measurements are taken at discrete points (locations), for instance air tem
perature at meteostations, and you though want to have a continuous representation over
the whole area of interest, you can use spatial interpolation, see Chapter 11. The result is
then typically available as raster data, and the temperature at any location has been predicted
based on measurements from neighboring meteostations, see also Figure 38.9, with the blue
color scheme originally varying gradually.

39.2.3. Pros and cons
In this section we briefly review the major pros and cons of the use of vector and raster data.
Typically a pro of one, is a con of the other.

With vector data we are able to maintain the original resolution (and precision) of the
measurements underlying the spatial position information (resolution with which the position
coordinates of the points or vertices are stored). A map based on vector data has ‘infinite’
resolution.

The use of vector data is particularly suited for linear features (roads, rivers) and fea
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Figure 39.7: Example of a socalled (hierarchical) quadtree data structure.

tures with boundaries (parcels, orchards, lakes). Vector data allows us to correctly maintain
topology, cf. Section 39.4.

Vector data allows for efficient storage of socalled sparse data. We need to store only the
features present. Empty areas do not need to be stored.

The data structure of raster data is very easy to understand, and straightforward to work
with. Spatial analyses are simple and easy (simple math), think for instance of overlaying
different data sets / layers (just find the corresponding pixels, whereas with vector data in
tersections of polygons need to be computed). Similarly, raster data are easily and directly
obtained from imagery, whereas vector data, obtained for instance from tachymetry, involves
computations. With raster data, there is data for every part in the area covered (a full matrix);
thereby raster data is particularly suited to represent socalled continuous data (for instance
terrain elevation or amount of air pollution).

With raster data the resolution of spatial information, e.g. the ability to pinpoint an object,
is by default limited to the pixel size.

Raster data requires typically large amounts of storage space; in principle we need to
store a value for every pixel, no matter whether a feature is present or not. Also, as shown in
Figure 39.6, raster data deals poorly with linear features, and topological issues may arise (the
river may no longer be a nice continuous feature, as river pixels may not be directly adjacent).

39.2.4. Raster with adaptive grid
The raster data structure copes with spatially continuous phenomena by means of a ‘onesize
fits all’fixed cellsize — all grid cells have equal spatial size. This drawback can be overcome
by the use of an adaptive grid, to say, a varioscale cell size. The cell size is made dependent
on for instance the spatial gradient of the parameter or phenomenon of interest. A smaller
cell is used when there is a lot of change or variation, and a larger cell is used when ‘there
is not happening much’. Figure 39.7 shows an example of a socalled (hierarchical) quadtree
structure.

A quadtree starts from a regular partitioning of the twodimensional (typical horizontal)
domain. Starting from a set of discrete observation points irregularly positioned, one could go
for an irregular partioning as shown in Figure 11.3.

39.3. GIS structure
As a Geographic Information System (GIS) may house data sets from many different sources,
the data are organized in layers. With raster data, different images are stored on different
layers. With vector data, it is common to group features into layers. One layer then contains
features of the same geometric type, and with the same kind of attributes. Figure 39.8 shows
an example, with the complete, real world at bottom. There is a layer specifically for roads
(containing roads of different categories, such as provincial roads and local streets), one layer
for railways, another for buildings (containing houses, schools, railway stations, hospitals and
churches), and one for (linear) water bodies (like rivers and canals). Together, the layers build
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Figure 39.8: Vector data in a GIS, organized in different layers. The top layer contains roads, the second one
railways, the third one buildings and the fourth one waterways. Layers with vector data are typically stored in
socalled shape files.

road ID class surface road number street name

0001 provincial road tarmac 266 Bundesstrasse
0002 local street brick  Schulstrasse
0003 local street concrete  Weiherhof
0004 local street cobblestone  Kirchplatz

Table 39.1: Example of a simple attribute table, of road features.

a model of reality.

In a GIS one typically would like to store also nongeometric information, associated to the
objects (features). This alphanumerical type of information, or descriptive data, is referred
to as attributes. The layer of roads may be associated to a table, containing the road class
(highway, provincial road, local street, private road etc.), the type of surface (tarmac, concrete,
gravel, or unpaved), directionality (twoway or oneway), the number of lanes, street name
(if applicable), etc. Roadclass, type of surface, and street name etc. are the attributes of the
roads.

An example of an attribute table is shown in Table 39.1. Each row — a record — refers to
a feature, and each column — a field — covers one attribute of the features.

With a GIS you can make queries on attributes in the table. For instance, show all tarmac
roads. Or show all residential houses with a floor surface exceeding 250 square meter.
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Figure 39.9: Two spatial structures which are topologically identical.

Figure 39.10: Example of a highwaynoise map  24 hour average noise in dB in 2016, around the A12 highway
near Woerden. Data by Rijkswaterstaat on BRT Achtergrondkaart by Kadaster, map obtained through PDOK [59],
under CC0 1.0 license, Public Domain.

39.4. Topology
Topology expresses the spatial relationships between vector features. Two line segments in a
road network may not meet perfectly at an intersection. They are not connected, while they
should be, and this poses an topological issue. Parcels as registered by the Cadastre (national
land registration authority) shall not overlap (otherwise that certain piece of land would have
two owners at the same time). Adjacent parcels shall have common edges. Land property
boundaries of one parcel shall not run into a neighboring parcel.

Figure 39.9 shows an example of spatial relationships. Areas A and C share a common
boundary, and so do B and C, and D and C. This is the case for both the model at left, and
the one at right. Adjacency relations are maintained, e.g. area B being adjacent to area D.

A correct topology is crucial for network analyses (connectivity). For instance for the
Rotterdam Metro map of Figure 37.4: it matters whether vertices (or nodes) in the network
are linked or not.

39.5. Spatial analysis
In the introduction of this chapter we mentioned that a GIS is able to answers questions like
‘What is located here?’, and ‘Where is the TU Delft Aula?’, and also ‘Where is the nearest ATM?’.
Similarly you may want to find (or select) all gas stations in a certain area.

But with a GIS, also more complex questions can be answered. A GIS enables us to carry
out spatial analyses. We may discover and research spatial patterns, similar to the analysis of
Dr. John Snow. For instance, is there a relation between soil type, yearly amount of rain fall
and land cover (vegetation)? This analysis you would do by making an overlay, i.e. by stacking

https://www.pdok.nl/
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various layers on top of each other. And next, what is the best place for agricultural activities?
A GIS may also answer a ‘What if’ type of question. For instance, suppose a dike will break,
what areas will be flooded? Related to this type of analysis, are so called proximity analyses.
What areas will — in terms of noise — be impacted by the construction of a new highway or
railway? It comes to determining whether features (buildings) are within or outside a noise
buffer zone around the new railway, see also Figure 39.10. Creating a buffer, for instance
according to distance to the object, is a common functionality of a GIS. And, as you likely
are already aware of, a GIS can help you to find the best (e.g. shortest, or quickest) route
in a network. The algorithm behind this function is often based on finding the shortest path
between nodes in a socalled graph, for instance a road network, and conceived by Dutch
computer scientist Edsger Dijkstra in 1956 [124].
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A
Error sources in landsurveying [*]

A.1. Atmospheric refraction
Figure 3.16 illustrated the Earth’s atmosphere as spherical layers around a spherical Earth,
with increasing density 𝜌 the closer one gets to the surface. The density of air drives the
refractive index, and for standard atmospheric conditions at sea level the refractive index, for
visible light, is about 𝑛=1.0003, as mentioned in Section 4.3 (the refractive index of water, at
20∘ C, for instance is way larger, 𝑛=1.333). Compared to vacuum, with 𝑛=1, the presence of
air molecules in the Earth’s atmosphere cause the electromagnetic waves to slow down  in
the atmosphere they travel slower than in vacuum.

Pressure 𝑝, volume 𝑉 and temperature 𝑇 of an ideal gas are related, see e.g. [52], as
𝑝𝑉 = 𝑁𝑘𝑇, where 𝑘 is the Boltzmann constant, and 𝑁 is the number of gas molecules.
Bringing the volume to the righthand side leads to

𝑝 = 𝑅𝜌𝑇

with 𝑅 the specific gas constant. This equation shows how pressure 𝑝 and temperature 𝑇 of
for instance dry air, are related to density 𝜌, and thereby to the refractive index 𝑛. In practice
we do not deal with an ideal gas. The atmospheric composition may vary (level of carbon
dioxide for instance), and it may contain less or more water vapor.

From the above expression we can see that a larger pressure leads to a higher density and
thereby to a larger refractive index, and a higher temperature leads to a lower density and
thereby to a smaller refractive index. These factors, pressure and temperature, are the main
drivers in deviations of the refractive index of 𝑛=1.0003 in standard conditions. Rising the
pressure by 100 mbar causes a 3 ⋅ 10−5 increase of the refractive index (30 ppm), and rising
the temperature by 30 degrees causes a 3 ⋅ 10−5 decrease of the refractive index (30 ppm),
hence both changes each lead to a 3 mm effect in measuring a 100 m distance (while using
the default refractive index of 𝑛=1.0003). Changing the relative humidity by 50% has an
impact which is smaller than the given pressure and temperature examples by one order
of magnitude. As a conclusion we state that changes larger than these examples are only
possible high up in mountainous areas.

A lot of research has been carried out on the physical background of the refractive index
and lots of models have been developed, typically based on extensive laboratory experiments
and measurement campaigns. For more details the reader is referred to [125].

So far in this appendix on atmospheric refraction we were concerned with the propagation
speed of electromagnetic waves in relation to measuring distances. In a layered medium, the
signal path will not be a geometrically straight line, but instead be (continuously) curved or
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𝐿 100 m 1000 m 10000 m

𝑐 0.8 mm 7.8 cm 7.8 m
𝑐′ 0.7 mm 6.8 cm 6.8 m

𝐿 − 𝐿′ 1.5 nm 1.5 𝜇m 1.5 mm
𝐿 − 𝐿” 1.5 nm 1.5 𝜇m 1.5 mm

Table A.1: Effects of Earth’s curvature and atmospheric refraction on leveling and distance measurements, com
puted with 𝑅=6378 km and 𝑘=0.13.

Figure A.1: The impact of Earth’s curvature and atmospheric refraction on measuring distances, with the Earth
shown in black. The geometric straight line distance (in green) between instrument and reflector at point P is 𝐿”.
In practice the distance is measured along the curved path in red, resulting in distance 𝐿′.

bended, as a result of refraction. This is shown in Figure G.9, and discussed, for a horizontally
layered medium, and in Figure 3.16 for a spherically layered medium.

As outlined in Section 3.4 this bending due to atmospheric refraction can be a serious
effect in leveling, being expressed as 𝑐 − 𝑐′. In measuring distances this bendingeffect can
be neglected in all practical circumstances, as shown in Table A.1.

𝑐 shows the effect of the Earth’s curvature on leveling, and 𝑐′ shows the combined effect
of the Earth’s curvature and the bending of the signal path due to a spherically layered atmo
sphere, as shown in Figure 3.16 at left. The effects of 𝑐 and 𝑐′ are computed according to the
approximations given in Figure 3.16 at right.

For the measurement of distance the signal path is bended, due to atmospheric refraction,
and the signal travels along the red curve in Figure A.1 to the reflector at point P  this is
distance 𝐿′. In the table 𝐿 − 𝐿′ shows by how much the distance measured along the actual
(bended) signal path 𝐿′ is shorter than the assumed horizontal distance 𝐿. The straight line
geometric distance from instrument to the target at P is 𝐿”. The difference 𝐿′−𝐿” is each time
smaller by two orders of magnitude than the listed differences 𝐿 − 𝐿′ and 𝐿 − 𝐿”.

The conclusion is that, on account of signal path bending, the Earth’s curvature and atmo
spheric refraction do play a role in leveling, see Sections 3.3 and 3.4, but not in (horizontal)
distance measurements.

A.2. Prism constant definition
In practice different conventions are used by different surveyequipment manufacturers in
defining the prism constant 𝐶prism, as introduced in Section 4.4. Usually, when using a brand
X total station together with a brand X corner reflector, the software of the instrument (auto
matically) takes care of applying the correct prism constant. Problems may arise when mixing
equipment from different brands, and in this appendix we review the definitions, such that
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appropriate actions can be taken in practice to handle this issue correctly.
From Figure 4.14 we know that the observed oneway distance equals 𝑑correct =

𝑑total
2 =

𝑑+ 𝑑prism,air
2 = 𝑑+𝑤, and refers to apparent reflection point So. In order to make the observed

distance refer to the defined center of symmetry of the reflector, point Sc, one has to subtract
the prism constant 𝐶prism. It is custom practice, for manufacturers like Nikon, Pentax, Sokkia,
Topcon and Trimble (with Geodimeter and Spectra Precision), to report actually the negative of
the prism constant, hence in documents and manuals you will find the value for −𝐶prism. The
only exception is Zeiss (now also part of Trimble) which directly reports the value for 𝐶prism.

In general the standard prisms of these manufactures have a prism constant of 𝐶prism =
30 mm. The diameter of the frontal face of these prisms is 60 mm.

Leica defines the prism constant differently. The prism constant Leica is using is defined
with reference to its standard round prism type (GPH1 and GPR1). These prisms have an
absolute or true constant of 𝐶prism,𝑜 = 34.4 mm. This is the standard reference value in
Leica total stations. All other prism constants are relative to this reference value, hence
𝐶prism,rel = 𝐶prism − 𝐶prism,𝑜. They work with a relative prism constant 𝐶prism,rel. Obviously,
when their standard prism is used, the relative prism constant equals zero 𝐶prism,rel = 0.

When for example a Topcon prism is used, with a given −𝐶prism = 30 mm (mind reporting
the negative of the prism constant), in combination with a Leica total station, then the correct
input value for the (relative) prism constant to the Leica total station is −𝐶prism,rel = –30 +
34.4 = +4.4 mm.

Or the other way around, when a Leica 360degree prism type GRZ121 is used with a
(relative) prism constant, as specified by the manufacturer, of −𝐶prism,rel = 23.1 mm, in con
junction with a nonLeica total station, then the to be entered prism constant is: −𝐶prism =
−𝐶prism,rel − 𝐶prism,𝑜, hence −𝐶prism = 23.1  34.4 = 11.3 mm.
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Several mathematical proofs [*]

B.1. Mean and variance of normal distribution
The Probability Density Function (PDF) of a normally distributed random variable 𝑦 reads

𝑓(𝑦) = 1
√2𝜋𝜎

𝑒−
(𝑦−𝑥)2
2𝜎2 (B.1)

and in this section we prove that 𝑥 is the mean, and 𝜎 the standard deviation (𝜎2 the variance).
Using (6.9) the mean reads

𝐸(𝑦) = ∫
+∞

−∞
𝑦 1
√2𝜋𝜎

𝑒−
1
2 (
(𝑦−𝑥)
𝜎 )2 𝑑𝑦 (B.2)

which can be split into

𝐸(𝑦) = 𝑥∫
+∞

−∞

1
√2𝜋𝜎

𝑒−
1
2 (
(𝑦−𝑥)
𝜎 )2 𝑑𝑦 + ∫

+∞

−∞

(𝑦 − 𝑥)
√2𝜋𝜎

𝑒−
1
2 (
(𝑦−𝑥)
𝜎 )2 𝑑𝑦

The first part yields just the mean 𝑥, and in the second part we apply the change of variable
𝑧 = 𝑦−𝑥

𝜎

𝐸(𝑦) = 𝑥 + ∫
+∞

−∞
𝜎 𝑧
√2𝜋

𝑒−
𝑧2
2 𝑑𝑧

where the factor 𝜎 enters in the second term as the change of variable implies 𝜎𝑑𝑧 = 𝑑𝑦.

𝐸(𝑦) = 𝑥 + 𝜎
√2𝜋

[−𝑒−
𝑧2
2 ]
∞

−∞
= 𝑥

as the second term yields zero. The mean of the random variable 𝑦 reads 𝑥.
Using (6.10) the variance reads

𝐷(𝑦) = ∫
+∞

−∞
(𝑦 − 𝑥)2 1

√2𝜋𝜎
𝑒−

1
2 (
(𝑦−𝑥)
𝜎 )2 𝑑𝑦 (B.3)

where we used already 𝐸(𝑦) = 𝑥. Again we apply the change of variable 𝑧 = 𝑦−𝑥
𝜎

𝐷(𝑦) = ∫
+∞

−∞
𝜎2 𝑧

2

√2𝜋
𝑒−

𝑧2
2 𝑑𝑧
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which can be split into

𝐷(𝑦) = 𝜎2

√2𝜋
∫
+∞

−∞
(𝑧𝑒−

𝑧2
2 )(𝑧) 𝑑𝑧

where we apply integration by parts

𝐷(𝑦) = 𝜎2

√2𝜋
(− [𝑧𝑒−

𝑧2
2 ]
∞

−∞
+∫

+∞

−∞
𝑒−

𝑧2
2 𝑑𝑧) = 𝜎2

where we used the definite integral ∫∞0 𝑒−
𝑧2

(√2)2 𝑑𝑧 = √2𝜋
2 . The variance of the random variable

𝑦 reads 𝜎2.

B.2. Mean and variance propagation laws
We consider the following linear transformation, as given by (7.7), of 𝑚vector 𝑦

𝑣 = 𝑅𝑦 + 𝑠

where vector 𝑣 has 𝑛 elements, and consequently matrix 𝑅 has 𝑛 rows and 𝑚 columns, and
vector 𝑠 is an 𝑛vector.

In this section we prove that 𝐸(𝑣) = 𝑅𝐸(𝑦) + 𝑠 (7.8) and that 𝑄𝑣𝑣 = 𝑅𝑄𝑦𝑦𝑅𝑇 (7.9).
Using

𝐸(𝐺(𝑦)) = ∫
∞

−∞
𝐺(𝑦)𝑓(𝑦) 𝑑𝑦

we compute the mean of 𝑣

𝐸(𝑣) = 𝐸(𝑅𝑦 + 𝑠) = ∫
∞

−∞
(𝑅𝑦 + 𝑠)𝑓(𝑦) 𝑑𝑦

= 𝑅∫
∞

−∞
𝑦𝑓(𝑦) 𝑑𝑦 + 𝑠∫

∞

−∞
𝑓(𝑦) 𝑑𝑦 = 𝑅𝐸(𝑦) + 𝑠

which proves (7.8) in Section 7.2.
With (7.4) applied to vector 𝑣

𝐷(𝑣) = 𝐸((𝑣 − 𝐸(𝑣))(𝑣 − 𝐸(𝑣))𝑇) = 𝐸((𝑅𝑦 + 𝑠 − 𝑅𝐸(𝑦) − 𝑠)(𝑅𝑦 + 𝑠 − 𝑅𝐸(𝑦) − 𝑠)𝑇)

= 𝑅𝐸((𝑦 − 𝐸(𝑦))(𝑦 − 𝐸(𝑦))𝑇)𝑅𝑇 = 𝑅𝐷(𝑦)𝑅𝑇 = 𝑅𝑄𝑦𝑦𝑅𝑇 = 𝑄𝑣𝑣
which proves (7.9).

B.3. Nonlinear mean and variance propagation laws
In Section 7.4 the mean and variance propagation laws were given for the nonlinear transfor
mation 𝑣 = 𝐺(𝑦) (7.10), where 𝐺() represents 𝑛 nonlinear functions of each time 𝑚 random
variables (the elements of vector 𝑦).

The Taylor series, up to second order term, of one of the 𝑛 nonlinear functions 𝑣𝑖 = 𝐺𝑖(𝑦)
with 𝑖 = 1,… , 𝑛, at 𝐸(𝑦), reads

𝐺𝑖(𝑦) ≈ 𝐺𝑖(𝐸(𝑦)) +
𝜕𝐺𝑖
𝜕𝑦𝑇 |𝐸(𝑦)

(𝑦 − 𝐸(𝑦)) + 12(𝑦 − 𝐸(𝑦))
𝑇 𝜕2𝐺𝑖
𝜕𝑦𝑦𝑇 |𝐸(𝑦)

(𝑦 − 𝐸(𝑦))
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where 𝜕𝐺𝑖(𝑦)
𝜕𝑦 is the 𝑚×1 gradient vector of 𝐺𝑖(𝑦), and

𝜕2𝐺𝑖(𝑦)
𝜕𝑦𝑦𝑇 is the 𝑚×𝑚 Hessian matrix of

𝐺𝑖(𝑦) (matrix with second order partial derivatives).
The expectation of 𝑣𝑖 in terms of 𝑦 becomes

𝐸(𝑣𝑖) = 𝐸(𝐺𝑖(𝑦)) ≈ 𝐸(𝐺𝑖(𝐸(𝑦)))+𝐸(
𝜕𝐺𝑖
𝜕𝑦𝑇 |𝐸(𝑦)

(𝑦−𝐸(𝑦)))+𝐸(12(𝑦−𝐸(𝑦))
𝑇 𝜕2𝐺𝑖
𝜕𝑦𝑦𝑇 |𝐸(𝑦)

(𝑦−𝐸(𝑦)))

= 𝐺𝑖(𝐸(𝑦)) +
1
2trace(

𝜕2𝐺𝑖
𝜕𝑦𝑦𝑇 |𝐸(𝑦)

𝐸((𝑦 − 𝐸(𝑦))(𝑦 − 𝐸(𝑦))𝑇))

= 𝐺𝑖(𝐸(𝑦)) +
1
2trace(

𝜕2𝐺𝑖
𝜕𝑦𝑦𝑇 |𝐸(𝑦)

𝑄𝑦𝑦)

as 𝐸(𝑦 −𝐸(𝑦)) = 𝐸(𝑦)−𝐸(𝐸(𝑦)) = 𝐸(𝑦)−𝐸(𝑦) = 0, and where trace means taking the sum
of the diagonal elements of the matrix, and, we used definitions (7.4) and (7.5) for 𝑄𝑦𝑦. This
completes the proof of (7.11).

The 𝑛 × 𝑛 variance matrix of 𝑣 is formally given by

𝑄𝑣𝑣 = 𝐸((𝑣 − 𝐸(𝑣))(𝑣 − 𝐸(𝑣))𝑇)

see (7.4) and (7.5). We consider one element (𝑖, 𝑗), which is 𝑄𝑣𝑖𝑣𝑗

𝑄𝑣𝑖𝑣𝑗 = 𝐸((𝑣𝑖 − 𝐸(𝑣𝑖))(𝑣𝑗 − 𝐸(𝑣𝑗))
𝑇)

with 𝑖 = 1,… , 𝑛 and 𝑗 = 1,… , 𝑛. We supply the above Taylor series, up to second order term,
of 𝑣𝑖 = 𝐺𝑖(𝑦), and of 𝑣𝑗 = 𝐺𝑗(𝑦), and we substitute the just obtained approximation for 𝐸(𝑣𝑖),
and for 𝐸(𝑣𝑗). In the expansion we neglect all terms with cross products of first and second
order derivatives of 𝐺(𝑦), as well as products of second order derivatives, and we are left with
just one term, namely

𝑄𝑣𝑖𝑣𝑗 ≈ 𝐸(
𝜕𝐺𝑖
𝜕𝑦𝑇 |𝐸(𝑦)

(𝑦 − 𝐸(𝑦))(𝑦 − 𝐸(𝑦))𝑇
𝜕𝐺𝑗
𝜕𝑦𝑇 |

𝑇

𝐸(𝑦)
)

= 𝜕𝐺𝑖
𝜕𝑦𝑇 |𝐸(𝑦)

𝐸((𝑦 − 𝐸(𝑦))(𝑦 − 𝐸(𝑦))𝑇)
𝜕𝐺𝑗
𝜕𝑦𝑇 |

𝑇

𝐸(𝑦)
= 𝜕𝐺𝑖
𝜕𝑦𝑇 |𝐸(𝑦)

𝑄𝑦𝑦
𝜕𝐺𝑗
𝜕𝑦𝑇 |

𝑇

𝐸(𝑦)

where we used again definition (7.4). Finally the above expression can be used for any element
𝑄𝑣𝑖𝑣𝑗 , hence, the full 𝑛 × 𝑛 variance matrix 𝑄𝑣𝑣 results as

𝑄𝑣𝑣 ≈
𝜕𝐺
𝜕𝑦𝑇 |𝐸(𝑦)

𝑄𝑦𝑦
𝜕𝐺
𝜕𝑦𝑇 |

𝑇

𝐸(𝑦)

This completes the proof of (7.12). The term 𝜕𝐺(𝑦)
𝜕𝑦𝑇 is an 𝑛 × 𝑚 matrix, containing, as rows,

the gradient vectors of nonlinear functions 𝐺𝑖(𝑦), with 𝑖 = 1,… , 𝑛, all evaluated at 𝐸(𝑦).
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B.4. Leastsquares
In this section we prove that �̂� = (𝐴𝑇𝐴)−1𝐴𝑇𝑦 (8.4) is the solution to min𝑥 ‖𝑦 − 𝐴𝑥‖2 (8.5).

For the leastsquares solution we minimize, for 𝑥, the function 𝑔(𝑥) = ‖𝑦 − 𝐴𝑥‖2 = (𝑦 −
𝐴𝑥)𝑇(𝑦 − 𝐴𝑥). The gradient, the first order derivative, is set equal to zero, and the Hessian,
the second order derivative, should be larger than zero (be a positive definite matrix), in order
for the found (single) extremum to be a global minimizer.

𝑔(𝑥) = 𝑦𝑇𝑦 − 𝑦𝑇𝐴𝑥 − 𝑥𝑇𝐴𝑇𝑦 + 𝑥𝑇𝐴𝑇𝐴𝑥 = 𝑦𝑇𝑦 − 2𝑥𝑇𝐴𝑇𝑦 + 𝑥𝑇𝐴𝑇𝐴𝑥

as the innerproduct 𝑦𝑇𝑏 = 𝑏𝑇𝑦. Setting 𝜕𝑔(𝑥)
𝜕𝑥 = 0 yields

−2𝐴𝑇𝑦 + 2𝐴𝑇𝐴𝑥 = 0

where we used 𝜕(𝑥𝑇𝑏)
𝜕𝑥 = 𝑏 and 𝜕(𝑥𝑇𝑀𝑥)

𝜕𝑥 = (𝑀+𝑀𝑇)𝑥 (which both can be verified by expansion),
and recognize that 𝐴𝑇𝐴 is a symmetric 𝑛 × 𝑛 matrix. Solving this for 𝑥 yields

𝐴𝑇𝐴�̂� = 𝐴𝑇𝑦

which is referred to as the system of normal equations (it is a system with 𝑛 unknowns in 𝑛
equations), and inverting matrix 𝐴𝑇𝐴 yields indeed (8.4). The Hessian reads

𝜕2𝑔(𝑥)
𝜕𝑥𝑥𝑇 = 2𝐴𝑇𝐴 > 0

which is indeed a positive definite matrix, and where we used 𝜕(𝑏𝑇𝑥)
𝜕𝑥𝑇 = 𝑏𝑇.

B.5. Concerns on nonlinear estimation
For model (8.8) in Section 8.4, application of the leastsquares criterion (8.5), taking into
account the variance matrix 𝑄𝑦𝑦, yields

�̂�′ = argmin
𝑥∈𝑅𝑛

‖𝑦 − 𝐹(𝑥)‖2𝑄−1𝑦𝑦

the nonlinear estimator �̂�′ = 𝐺(𝑦), which in most cases in practice can not be found in
an analytical form. Also we mention that nonlinear estimation is not a trivial subject. The
propagation of the random characteristics of 𝑦 into those of �̂�′ is difficult. For instance the
mean and variance can not be propagated through a nonlinear relation in a straightforward
way, e.g. 𝐸(�̂�′) = 𝐸(𝐺(𝑦)) ≠ 𝐺(𝐸(𝑦)), the nonlinear estimator is biased 𝐸(�̂�′) ≠ 𝑥.

Through the iterative procedure in Section 8.4 the estimate �̂� is a numerical approximation
of the realization of the nonlinear estimator �̂�′.

B.6. Linefitting with observed independent variable
Equation (8.2) 𝐸(𝑦) = 𝐴𝑥; 𝐷(𝑦) = 𝑄𝑦𝑦 presented the (linear) model of observation equa
tions, with observations 𝑦, unknown parameters 𝑥, and known coefficients in 𝑚x𝑛matrix 𝐴.
Example (10.2) was on line fitting, and positions were observed, with error, but timing, the
independent variable, was assumed to be perfect (errorfree), yielding the coefficients of ma
trix 𝐴.

If this assumption (on the independent variable) cannot be made, the model for line fitting
has to be set up differently. As an example we consider the measurement of the expansion of
a steel bar due to a rise in temperature. Both the dependent variable (the length, observed,
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in vector 𝑦; sometimes called the response), and the independent variable (temperature,
occuring in matrix 𝐴), are now subject to observational error.

The length of the bar is measured 𝑚 times: 𝑦1, 𝑦2, … , 𝑦𝑚 (and inevitably measurement
errors are being made), and, at the same time also the (corresponding) temperature is mea
sured: 𝑇1, 𝑇2, … , 𝑇𝑚 (and also here inevitably with some error). The functional model (in
absence of any error) reads 𝑦𝑖 = 𝑇𝑖𝑥1 + 𝑥2, for 𝑖 = 1,… ,𝑚, where 𝑥2 is the length of the bar
at reference temperature (e.g. 𝑇 = 0), and 𝑥1 is the coefficient of thermal expansion (in this
case the increase in length per degree, for instance for steel approximately 10 𝜇m per degree,
for a 1 meter bar).

Trying to formulate the model as before yields

𝐸⎛⎜

⎝

𝑦
1
𝑦
2
⋮
𝑦
𝑚

⎞
⎟

⎠

= ⎛

⎝

𝑇1 1
𝑇2 1
⋮ ⋮
𝑇𝑚 1

⎞

⎠⏝⎵⎵⎵⏟⎵⎵⎵⏝
𝐴

( 𝑥1𝑥2
)

but, this model now has observational error also in the independent variable 𝑇𝑖, and is referred
to as an ErrorinVariables (EIV) model. This is an example of a socalled total least squares
problem. There exist various approaches to solve such a problem, e.g. using singular value
decomposition. In the sequel we describe another way.

Earlier, only 𝑦 was a random vector, namely 𝑦, and 𝑇 was not, but now also 𝑇 is a random
vector, namely 𝑇, and with keeping just 𝑥1 and 𝑥2 as unknown parameters, we would have
random variables in the design matrix 𝐴. Therefore the model is set up differently, namely
by introducing also the temperatures as unknown parameters, next to 𝑥1 and 𝑥2. The actual
temperatures are not known — they have been measured, but with error. The full model of
observation equations becomes:

𝐸(𝑇𝑖) = 𝑇𝑖
𝐸(𝑦

𝑖
) = 𝑇𝑖𝑥1 + 𝑥2 for 𝑖 = 1, 2, … ,𝑚 ; 𝐷 ( 𝑇𝑦 ) = (

𝑄𝑇𝑇 0
0 𝑄𝑦𝑦

)

with in total 2𝑚 observations (which is exactly all we measured), 𝑚 temperatures and 𝑚
lengths, and 𝑚+2 unknown parameters, namely 𝑥1, 𝑥2, and 𝑇1, 𝑇2, … , 𝑇𝑚. The total 2𝑚 x 2𝑚
variance matrix will typically be a blockdiagonal matrix, as there is generally no correlation
between temperature and length readings.

The above extended model of observation equations is nonlinear, notably by the product
of 𝑇𝑖 and 𝑥1, cf. Section 8.4 on linearization and iteration.

Figure B.1 shows an example without (at left), and with (at right) observational error in
the independent variable. In the former case, the leastsquares residuals (indicated by the
dashed lines) are exactly along the vertical axis, whereas in the latter case both observed
values 𝑇𝑖 and 𝑦𝑖 get ‘corrected’.

B.7. Ordinary Kriging
In this section we prove the key equation for Ordinary Kriging (11.9).

The requirement of linear interpolation is already implied in (11.2), �̂�0 = 𝑤
𝑇𝑦.

The interpolation is also required to be unbiased. With just a constant unknown mean
(11.7), with 𝐴 = 𝑙, yields 𝐸(𝑦) = 𝑙𝑥, where 𝑙 is a vector of all ones. Then with (11.2) and (7.8)
𝐸(�̂�0) = 𝑤𝑇𝐸(𝑦) = 𝑤𝑇𝑙𝑥. Now with (11.8) for 𝑧(𝑝0) = 𝑧0 we know that 𝐸(𝑧0) = 𝑥, hence
𝐸(�̂�0) = 𝐸(𝑧0) yields the constraint 𝑤

𝑇𝑙 = 1, or ∑𝑚𝑖=1𝑤𝑖 = 1.
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Figure B.1: Line fitting: the circles show the (same) original observations, pairs (𝑇𝑖,𝑦𝑖), on the left the (ordinary)
leastsquares solution when temperature is errorfree, and at right, when both length and temperature measure
ment are subject to observational error, and the alternative (nonlinear) approach with temperatures as unknown
parameters is used. The crosses show pairs (𝑇𝑖,�̂�𝑖) at left, for the line �̂�1=0.82 and �̂�2=5.79, and pairs (�̂�𝑖,𝑁𝐿,�̂�𝑖,𝑁𝐿)
at right, for the line �̂�1,𝑁𝐿=0.81 and �̂�2,𝑁𝐿=6.05; crosses are all on the fitted line in both cases.

Eventually, to achieve the best interpolator �̂�0, we require minimum error variance with
the error as ̂𝜖 = 𝑧0 − �̂�0. Variance 𝜎

2
�̂� should be as small as possible, implying the largest

probability on a small error at any position, and practically, the interpolated value being as
close as possible to the actual waterdepth. Hence, the goal is to determine the elements of
vector 𝑤, such that

min
𝑤
𝜎2�̂� subject to 𝑤𝑇𝑙 − 1 = 0 (B.4)

The error variance is obtained through noting, with (11.2), that

̂𝜖 = ( 1 −1 ) ( 𝑧0�̂�0
) = ( 1 −𝑤𝑇 ) ( 𝑧0𝑦 )

with the variance matrix of the vector on the right hand side as

( 𝑄𝑧0𝑧0 𝑄𝑧0𝑦
𝑄𝑦𝑧0 𝑄𝑦𝑦

)

and 𝑄𝑧0𝑧0 = 𝜎2𝑧0 . Applying the variance propagation law (7.9) yields

𝜎2�̂� = 𝜎2𝑧0 +𝑤𝑇𝑄𝑦𝑦𝑤 − 𝑄𝑧0𝑦𝑤 −𝑤𝑇𝑄𝑦𝑧0 = 𝜎2𝑧 +𝑤𝑇𝑄𝑦𝑦𝑤 − 2𝑤𝑇𝑄𝑦𝑧0 (B.5)

and the error variance depends on the weights in vector 𝑤.
The minimization (B.4), including the constraint, is solved using the Lagrange multiplier

rule. The Lagrange function becomes

𝐿(𝑤, 𝜆) = 𝜎2�̂� + 𝜆(𝑤𝑇𝑙 − 1) = 𝜎2𝑧 +𝑤𝑇𝑄𝑦𝑦𝑤 − 2𝑤𝑇𝑄𝑦𝑧0 + 𝜆(𝑤𝑇𝑙 − 1)

where 𝜆 is the Lagrange multiplier, and (B.5) has been substituted. Setting the partial deriva
tives of 𝐿(𝑤, 𝜆) to zero yields

𝜕𝐿(𝑤, 𝜆)
𝜕𝑤 = 2𝑄𝑦𝑦𝑤 − 2𝑄𝑦𝑧0 + 𝜆𝑙 = 0

which is an 𝑚vector, and with 𝑄𝑦𝑦 a symmetric matrix, and

𝜕𝐿(𝑤, 𝜆)
𝜕𝜆 = 𝑤𝑇𝑙 − 1 = 0
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These 𝑚 + 1 equations, with 𝑚 + 1 unknowns can be cast in

( 𝑄𝑦𝑦 𝑙
𝑙𝑇 0 )(

𝑤
𝜈 ) = (

𝑄𝑦𝑧0
1 ) (B.6)

with 𝜈 = 𝜆
2 , see (11.9), from which the weights can be obtained through (11.10).

The inverse in (11.10) can be shown to read

( 𝑄𝑦𝑦 𝑙
𝑙𝑇 0 )

−1
= ( 𝑄

−1
𝑦𝑦 − 𝑄−1𝑦𝑦 𝑙(𝑙𝑇𝑄−1𝑦𝑦 𝑙)−1𝑙𝑇𝑄−1𝑦𝑦 𝑄−1𝑦𝑦 𝑙(𝑙𝑇𝑄−1𝑦𝑦 𝑙)−1

(𝑙𝑇𝑄−1𝑦𝑦 𝑙)−1𝑙𝑇𝑄−1𝑦𝑦 −(𝑙𝑇𝑄−1𝑦𝑦 𝑙)−1
)

Once the values for vector 𝑤 have been obtained, the interpolation error variance can be
evaluated using (B.5).





C
Normal distribution: table
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r
α

Figure C.1: Standard normal distribution N(0,1): onesided level of significance 𝛼 as function of the critical value
𝑟𝛼, i.e. 𝛼 = 1 −Φ(𝑟𝛼).
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384 C. Normal distribution: table

𝑟𝛼 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002

Table C.1: Standard normal distribution N(0,1): onesided level of significance 𝛼 as function of the critical value
𝑟𝛼, i.e. 𝛼 = 1−Φ(𝑟𝛼). Values of 𝑟𝛼 are given up to the first decimal in the first column, the second decimal in the
first row. Example: 𝛼 = 0.0250 for 𝑟𝛼 = 1.96.
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386 D. Chisquared distribution: table

𝛼
0.
99
90

0.
99
50

0.
99
00

0.
97
50

0.
95
00

0.
90
00

0.
75
00

0.
50
00

0.
25
00

0.
10
00

0.
05
00

0.
02
50

0.
01
00

0.
00
50

0.
00
10

𝑛 1
0.
00
00

0.
00
00

0.
00
02

0.
00
10

0.
00
39

0.
01
58

0.
10
15

0.
45
49

1.
32
33

2.
70
55

3.
84
15

5.
02
39

6.
63
49

7.
87
94

10
.8
27
6

2
0.
00
20

0.
01
00

0.
02
01

0.
05
06

0.
10
26

0.
21
07

0.
57
54

1.
38
63

2.
77
26

4.
60
52

5.
99
15

7.
37
78

9.
21
03

10
.5
96
6

13
.8
15
5

3
0.
02
43

0.
07
17

0.
11
48

0.
21
58

0.
35
18

0.
58
44

1.
21
25

2.
36
60

4.
10
83

6.
25
14

7.
81
47

9.
34
84

11
.3
44
9

12
.8
38
2

16
.2
66
2

4
0.
09
08

0.
20
70

0.
29
71

0.
48
44

0.
71
07

1.
06
36

1.
92
26

3.
35
67

5.
38
53

7.
77
94

9.
48
77

11
.1
43
3

13
.2
76
7

14
.8
60
3

18
.4
66
8

5
0.
21
02

0.
41
17

0.
55
43

0.
83
12

1.
14
55

1.
61
03

2.
67
46

4.
35
15

6.
62
57

9.
23
64

11
.0
70
5

12
.8
32
5

15
.0
86
3

16
.7
49
6

20
.5
15
0

6
0.
38
11

0.
67
57

0.
87
21

1.
23
73

1.
63
54

2.
20
41

3.
45
46

5.
34
81

7.
84
08

10
.6
44
6

12
.5
91
6

14
.4
49
4

16
.8
11
9

18
.5
47
6

22
.4
57
7

7
0.
59
85

0.
98
93

1.
23
90

1.
68
99

2.
16
73

2.
83
31

4.
25
49

6.
34
58

9.
03
71

12
.0
17
0

14
.0
67
1

16
.0
12
8

18
.4
75
3

20
.2
77
7

24
.3
21
9

8
0.
85
71

1.
34
44

1.
64
65

2.
17
97

2.
73
26

3.
48
95

5.
07
06

7.
34
41

10
.2
18
9

13
.3
61
6

15
.5
07
3

17
.5
34
5

20
.0
90
2

21
.9
55
0

26
.1
24
5

9
1.
15
19

1.
73
49

2.
08
79

2.
70
04

3.
32
51

4.
16
82

5.
89
88

8.
34
28

11
.3
88
8

14
.6
83
7

16
.9
19
0

19
.0
22
8

21
.6
66
0

23
.5
89
4

27
.8
77
2

10
1.
47
87

2.
15
59

2.
55
82

3.
24
70

3.
94
03

4.
86
52

6.
73
72

9.
34
18

12
.5
48
9

15
.9
87
2

18
.3
07
0

20
.4
83
2

23
.2
09
3

25
.1
88
2

29
.5
88
3

11
1.
83
39

2.
60
32

3.
05
35

3.
81
57

4.
57
48

5.
57
78

7.
58
41

10
.3
41
0

13
.7
00
7

17
.2
75
0

19
.6
75
1

21
.9
20
0

24
.7
25
0

26
.7
56
8

31
.2
64
1

12
2.
21
42

3.
07
38

3.
57
06

4.
40
38

5.
22
60

6.
30
38

8.
43
84

11
.3
40
3

14
.8
45
4

18
.5
49
3

21
.0
26
1

23
.3
36
7

26
.2
17
0

28
.2
99
5

32
.9
09
5

13
2.
61
72

3.
56
50

4.
10
69

5.
00
88

5.
89
19

7.
04
15

9.
29
91

12
.3
39
8

15
.9
83
9

19
.8
11
9

22
.3
62
0

24
.7
35
6

27
.6
88
2

29
.8
19
5

34
.5
28
2

14
3.
04
07

4.
07
47

4.
66
04

5.
62
87

6.
57
06

7.
78
95

10
.1
65
3

13
.3
39
3

17
.1
16
9

21
.0
64
1

23
.6
84
8

26
.1
18
9

29
.1
41
2

31
.3
19
3

36
.1
23
3

15
3.
48
27

4.
60
09

5.
22
93

6.
26
21

7.
26
09

8.
54
68

11
.0
36
5

14
.3
38
9

18
.2
45
1

22
.3
07
1

24
.9
95
8

27
.4
88
4

30
.5
77
9

32
.8
01
3

37
.6
97
3

16
3.
94
16

5.
14
22

5.
81
22

6.
90
77

7.
96
16

9.
31
22

11
.9
12
2

15
.3
38
5

19
.3
68
9

23
.5
41
8

26
.2
96
2

28
.8
45
4

31
.9
99
9

34
.2
67
2

39
.2
52
4

17
4.
41
61

5.
69
72

6.
40
78

7.
56
42

8.
67
18

10
.0
85
2

12
.7
91
9

16
.3
38
2

20
.4
88
7

24
.7
69
0

27
.5
87
1

30
.1
91
0

33
.4
08
7

35
.7
18
5

40
.7
90
2

18
4.
90
48

6.
26
48

7.
01
49

8.
23
07

9.
39
05

10
.8
64
9

13
.6
75
3

17
.3
37
9

21
.6
04
9

25
.9
89
4

28
.8
69
3

31
.5
26
4

34
.8
05
3

37
.1
56
5

42
.3
12
4

19
5.
40
68

6.
84
40

7.
63
27

8.
90
65

10
.1
17
0

11
.6
50
9

14
.5
62
0

18
.3
37
7

22
.7
17
8

27
.2
03
6

30
.1
43
5

32
.8
52
3

36
.1
90
9

38
.5
82
3

43
.8
20
2

20
5.
92
10

7.
43
38

8.
26
04

9.
59
08

10
.8
50
8

12
.4
42
6

15
.4
51
8

19
.3
37
4

23
.8
27
7

28
.4
12
0

31
.4
10
4

34
.1
69
6

37
.5
66
2

39
.9
96
8

45
.3
14
7

21
6.
44
67

8.
03
37

8.
89
72

10
.2
82
9

11
.5
91
3

13
.2
39
6

16
.3
44
4

20
.3
37
2

24
.9
34
8

29
.6
15
1

32
.6
70
6

35
.4
78
9

38
.9
32
2

41
.4
01
1

46
.7
97
0

22
6.
98
30

8.
64
27

9.
54
25

10
.9
82
3

12
.3
38
0

14
.0
41
5

17
.2
39
6

21
.3
37
0

26
.0
39
3

30
.8
13
3

33
.9
24
4

36
.7
80
7

40
.2
89
4

42
.7
95
7

48
.2
67
9

23
7.
52
92

9.
26
04

10
.1
95
7

11
.6
88
6

13
.0
90
5

14
.8
48
0

18
.1
37
3

22
.3
36
9

27
.1
41
3

32
.0
06
9

35
.1
72
5

38
.0
75
6

41
.6
38
4

44
.1
81
3

49
.7
28
2

24
8.
08
49

9.
88
62

10
.8
56
4

12
.4
01
2

13
.8
48
4

15
.6
58
7

19
.0
37
3

23
.3
36
7

28
.2
41
2

33
.1
96
2

36
.4
15
0

39
.3
64
1

42
.9
79
8

45
.5
58
5

51
.1
78
6

25
8.
64
93

10
.5
19
7

11
.5
24
0

13
.1
19
7

14
.6
11
4

16
.4
73
4

19
.9
39
3

24
.3
36
6

29
.3
38
9

34
.3
81
6

37
.6
52
5

40
.6
46
5

44
.3
14
1

46
.9
27
9

52
.6
19
7

26
9.
22
21

11
.1
60
2

12
.1
98
1

13
.8
43
9

15
.3
79
2

17
.2
91
9

20
.8
43
4

25
.3
36
5

30
.4
34
6

35
.5
63
2

38
.8
85
1

41
.9
23
2

45
.6
41
7

48
.2
89
9

54
.0
52
0

27
9.
80
28

11
.8
07
6

12
.8
78
5

14
.5
73
4

16
.1
51
4

18
.1
13
9

21
.7
49
4

26
.3
36
3

31
.5
28
4

36
.7
41
2

40
.1
13
3

43
.1
94
5

46
.9
62
9

49
.6
44
9

55
.4
76
0

28
10
.3
90
9

12
.4
61
3

13
.5
64
7

15
.3
07
9

16
.9
27
9

18
.9
39
2

22
.6
57
2

27
.3
36
2

32
.6
20
5

37
.9
15
9

41
.3
37
1

44
.4
60
8

48
.2
78
2

50
.9
93
4

56
.8
92
3

29
10
.9
86
1

13
.1
21
1

14
.2
56
5

16
.0
47
1

17
.7
08
4

19
.7
67
7

23
.5
66
6

28
.3
36
1

33
.7
10
9

39
.0
87
5

42
.5
57
0

45
.7
22
3

49
.5
87
9

52
.3
35
6

58
.3
01
2

30
11
.5
88
0

13
.7
86
7

14
.9
53
5

16
.7
90
8

18
.4
92
7

20
.5
99
2

24
.4
77
6

29
.3
36
0

34
.7
99
7

40
.2
56
0

43
.7
73
0

46
.9
79
2

50
.8
92
2

53
.6
72
0

59
.7
03
1

40
17
.9
16
4

20
.7
06
5

22
.1
64
3

24
.4
33
0

26
.5
09
3

29
.0
50
5

33
.6
60
3

39
.3
35
3

45
.6
16
0

51
.8
05
1

55
.7
58
5

59
.3
41
7

63
.6
90
7

66
.7
66
0

73
.4
02
0

50
24
.6
73
9

27
.9
90
7

29
.7
06
7

32
.3
57
4

34
.7
64
3

37
.6
88
6

42
.9
42
1

49
.3
34
9

56
.3
33
6

63
.1
67
1

67
.5
04
8

71
.4
20
2

76
.1
53
9

79
.4
90
0

86
.6
60
8

60
31
.7
38
3

35
.5
34
5

37
.4
84
9

40
.4
81
7

43
.1
88
0

46
.4
58
9

52
.2
93
8

59
.3
34
7

66
.9
81
5

74
.3
97
0

79
.0
81
9

83
.2
97
7

88
.3
79
4

91
.9
51
7

99
.6
07
2

70
39
.0
36
4

43
.2
75
2

45
.4
41
7

48
.7
57
6

51
.7
39
3

55
.3
28
9

61
.6
98
3

69
.3
34
5

77
.5
76
7

85
.5
27
0

90
.5
31
2

95
.0
23
2

10
0.
42
52

10
4.
21
49

11
2.
31
69

80
46
.5
19
9

51
.1
71
9

53
.5
40
1

57
.1
53
2

60
.3
91
5

64
.2
77
8

71
.1
44
5

79
.3
34
3

88
.1
30
3

96
.5
78
2

10
1.
87
95

10
6.
62
86

11
2.
32
88

11
6.
32
11

12
4.
83
92

90
54
.1
55
2

59
.1
96
3

61
.7
54
1

65
.6
46
6

69
.1
26
0

73
.2
91
1

80
.6
24
7

89
.3
34
2

98
.6
49
9

10
7.
56
50

11
3.
14
53

11
8.
13
59

12
4.
11
63

12
8.
29
89

13
7.
20
84

10
0

61
.9
17
9

67
.3
27
6

70
.0
64
9

74
.2
21
9

77
.9
29
5

82
.3
58
1

90
.1
33
2

99
.3
34
1

10
9.
14
12

11
8.
49
80

12
4.
34
21

12
9.
56
12

13
5.
80
67

14
0.
16
95

14
9.
44
93

Table D.1: Central 𝜒2 distribution: critical value 𝜒2𝛼(𝑛, 0) as function of onesided level of significance 𝛼 (top row)
and degrees of freedom 𝑛 (left column). Given is oneminusthe CDF, hence 𝛼 represents the righttail probability.
Example: 𝛼 = 0.010 and 𝑛 = 10 yield 𝜒2𝛼(𝑛, 0) = 23.2093.
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E.1. Introduction
NMEA 0183 is a data format, a communication protocol and an electrical interface, for the
Position, Velocity and Time (PVT) output of a GNSS receiver, next to for instance an echo
sounder, and an anemometer.

This standard has been initiated and maintained by the National Marine Electronics Asso
ciation (NMEA) [126]. It is around already for a long time, several decades, and still often
used to communicate for instance position solutions of a GNSS receiver.

The NMEA 0183 Interface Standard is a copyrighted document and available only from
the NMEA. The latest version, as of November 2018, is version 4.11, which accomodates
multiGNSS (GPS, Glonass, Galileo, BeiDou and QZSS).

The NMEA 0183 standard is based on ASCII character encoding (American Standard Code
for Information Interchange  ASCII; for instance the bitsequence 1000001 standing for ’A’,
and 1100001 for ’a’), and a serial communication protocol. The data are communicated in
records or sentences, also called messages, starting with the character ‘$’, and ending with a
checksum of two characters, preceeded by a ‘*’.

E.2. Example
Below is shown an example of NMEA 0183 sentences, for two seconds.

$GNRMC,220332.00,A,5137.3391118,N,00443.2462641,E,0.017,,240320,,,A,V*15
$GNVTG,,T,,M,0.017,N,0.032,K,A*3A
$GNGGA,220332.00,5137.3391118,N,00443.2462641,E,1,12,0.67,0.390,M,46.060,M,,*63
$GNGSA,A,3,01,03,08,11,22,14,28,32,27,,,,1.22,0.67,1.02,1*03
$GNGSA,A,3,88,65,87,72,,,,,,,,,1.22,0.67,1.02,2*08
$GNGSA,A,3,03,08,15,13,21,,,,,,,,1.22,0.67,1.02,3*0E
$GNGSA,A,3,27,09,28,14,,,,,,,,,1.22,0.67,1.02,4*04
$GPGSV,3,1,09,01,63,288,47,03,25,224,41,08,49,168,47,11,82,163,44,1*68
$GPGSV,3,2,09,14,35,113,43,22,51,221,47,27,19,152,39,28,27,304,38,1*6F
$GPGSV,3,3,09,32,38,082,47,1*5E
$GPGSV,3,1,09,01,63,288,42,03,25,224,35,08,49,168,41,11,82,163,,6*6F
$GPGSV,3,2,09,14,35,113,,22,51,221,,27,19,152,38,28,27,304,,6*66
$GPGSV,3,3,09,32,38,082,40,6*5E
$GLGSV,2,1,06,65,64,158,43,66,08,196,37,71,09,029,,72,54,052,44,1*72
$GLGSV,2,2,06,87,53,110,47,88,71,335,42,1*71
$GLGSV,2,1,06,65,64,158,36,66,08,196,40,71,09,029,18,72,54,052,42,3*7D
$GLGSV,2,2,06,87,53,110,36,88,71,335,29,3*78
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$GAGSV,2,1,06,03,50,087,45,08,37,163,43,13,68,298,45,15,56,106,44,7*7F
$GAGSV,2,2,06,18,67,242,48,21,16,260,37,7*71
$GAGSV,2,1,06,03,50,087,44,08,37,163,44,13,68,298,45,15,56,106,46,2*7E
$GAGSV,2,2,06,18,67,242,48,21,16,260,38,2*7B
$GBGSV,1,1,04,09,35,064,37,14,26,049,30,27,77,272,46,28,43,136,47,1*7E
$GBGSV,1,1,04,09,35,064,43,14,26,049,33,27,77,272,,28,43,136,,3*7D
$GNGLL,5137.3391118,N,00443.2462641,E,220332.00,A,A*77
$GNRMC,220333.00,A,5137.3391090,N,00443.2462609,E,0.022,,240320,,,A,V*1F
$GNVTG,,T,,M,0.022,N,0.041,K,A*38
$GNGGA,220333.00,5137.3391090,N,00443.2462609,E,1,12,0.67,0.394,M,46.060,M,,*6B
$GNGSA,A,3,01,03,08,11,22,14,28,32,27,,,,1.22,0.67,1.02,1*03
$GNGSA,A,3,88,65,87,72,,,,,,,,,1.22,0.67,1.02,2*08
$GNGSA,A,3,03,08,15,13,21,,,,,,,,1.22,0.67,1.02,3*0E
$GNGSA,A,3,27,09,28,14,,,,,,,,,1.22,0.67,1.02,4*04
$GPGSV,3,1,09,01,63,288,47,03,25,224,41,08,49,168,47,11,82,163,44,1*68
$GPGSV,3,2,09,14,35,113,43,22,51,221,47,27,19,152,39,28,27,304,38,1*6F
$GPGSV,3,3,09,32,38,082,47,1*5E
$GPGSV,3,1,09,01,63,288,42,03,25,224,35,08,49,168,41,11,82,163,,6*6F
$GPGSV,3,2,09,14,35,113,,22,51,221,,27,19,152,38,28,27,304,,6*66
$GPGSV,3,3,09,32,38,082,40,6*5E
$GLGSV,2,1,06,65,64,158,43,66,08,196,37,71,09,029,,72,54,052,44,1*72
$GLGSV,2,2,06,87,53,110,47,88,71,335,42,1*71
$GLGSV,2,1,06,65,64,158,35,66,08,196,40,71,09,029,17,72,54,052,42,3*71
$GLGSV,2,2,06,87,53,110,36,88,71,335,29,3*78
$GAGSV,2,1,06,03,50,087,45,08,37,163,43,13,68,298,45,15,56,106,44,7*7F
$GAGSV,2,2,06,18,67,241,48,21,16,260,37,7*72
$GAGSV,2,1,06,03,50,087,44,08,37,163,44,13,68,298,45,15,56,106,46,2*7E
$GAGSV,2,2,06,18,67,241,48,21,16,260,38,2*78
$GBGSV,1,1,04,09,35,064,37,14,26,049,30,27,77,272,47,28,43,136,47,1*7F
$GBGSV,1,1,04,09,35,064,43,14,26,049,33,27,77,272,,28,43,136,,3*7D
$GNGLL,5137.3391090,N,00443.2462609,E,220333.00,A,A*7B

E.3. Position output
Sentences starting with GN are generic for Global Navigation Satellite Systems (GNSS), or
refer to a combination of GNSSes. The sentence GNRMC contains the time (in UTC) 22:03:32
(with seconds given with two decimals), the latitude 51 deg and 37.3391 min, North (N),
and longitude 4 deg and 43.2462 min, East (E), and the date 24 March 2020. The latitude
and longitude are given in degrees and decimal minutes. The latitude in this example equals
51.622318 deg. This sentence, GNRMC, contains the socalled recommended minimum data.

The sentence GNGGA presents the position (fix) solution, with again latitude and longitude,
and, height above Mean Sea Level (MSL), 0.390 m (altitude), and the geoid height above the
ellipsoid, 46.060 m (computed using the Earth Gravitational Model (EGM), see Section 32.4).
The ellipsoidal height is reconstructed as 0.390 + 46.060 = 45.67 m. There are 12 GNSS
satellites used for this position fix (in this case a standalone or single point position solution).

An alternative data format for position information (e.g. tracks) is KML, which is described
in Appendix K.

E.4. GNSS
The GPGSV sentence shows the GPS satellites in view, in this case 9 satellites (09), listing
four per sentence, with the satellite ID (PRNnumber), 01, the elevation angle (63 deg; from
0 to 90), the azimuth angle (288 deg; from 0 to 359), and the C/N0 as a measure for the
signalstrength (47 dBHz), and then on for the next satellite. There are similar sentences for
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Glonass, GLGSV, Galileo, GAGSV, and BeiDou, GBGSV. The first two characters, like GP, GN,
are also referred to as the talker ID.

The above example serves the purpose of giving a flavour of how NMEA looks like, and
only a few of the basic sentences are discussed. There are many more, and often a GNSS
equipment manufacturer even adds some additional, proprietary, sentences (for which the
standard actually allows).
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F.1. Introduction
RINEX stands for Receiver Independent Exchange Format (RINEX) [127]. It is the standard
format for the exchange of GNSS measurement data and is supported by almost all GNSS
processing software packages, and many GNSS equipment manufacturers.

As opposed to proprietary format, binary data in the GNSS receiver, you can directly view,
read and understand a GNSS measurement data file in RINEX format. In the next section,
with Figures F.1 and F.2 two examples are presented of such GNSS measurement data files in
RINEX format.

F.2. Examples
RINEX files are ASCII files that can be viewed and edited by any editor. RINEX Observation files
contain the pseudorange (code) and carrierphase measurements (the observed distances
to the satellites), while RINEX Navigation files contain the decoded data message from the
satellites including the broadcast ephemeris.

RINEX observation files consist of a block with metadata followed by several data blocks.
Each data block then contains the data (measurements) for one measurement epoch. A data
block with epoch data consist of an epoch header, with the epoch time, number of satellites
and a list with satellite ID’s, in subsequent lines followed by the measurements for each of
the satellites. The epoch time (in the red box) presents yearmonthday (in the example
of Figure F.1 2013, September 20th), and next, the time in hourminutesseconds, the first
record being 14:06:35. The time reported is GPS system time, as kept locally by the receiver
clock (and typically accurate to 1 millisecond). At the start of GPS, in January 1980, GPS time
was equal to UTC, but GPS time does not introduce leapseconds as UTC does (currently the
applicable number of leapseconds is 18, so, GPS time is 18 seconds ahead of UTC). Apart
from a number of leapseconds, GPS system time is, at the 10 nanosecond level, aligned with
UTC. In the Netherlands local time — in the GMT+1 time zone — is one hour ahead of UTC,
during Winter, and in Summer, with daylight saving time, two hours ahead of UTC.

In Figure F.1, at 14:06:35 (GPS time), 8 GPS satellites were observed, and for example
for GPS satellite 16 (G16), the pseudorange measurement is 22141508.477 m (this is the
observed distance to the satellite, listed in the first column). The order of the observation
types is presented in the orange box. Observationtype ‘C1’ refers to the pseudorange code
measurement on the L1frequency (1575.42 MHz), and ‘L1’ is the corresponding carrier phase
measurement. ‘P2’ and ‘L2’ are the pseudorange code and carrier phase measurement on the
L2frequency (1227.60 MHz).
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Figure F.1: Example of a GNSS measurement file in RINEX version 2, specifically a RINEX observation file.
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Figure F.2: Example of a GNSS measurement file in RINEX version 3, specifically a RINEX observation file.
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A full discussion of the RINEX format is beyond the scope of this appendix, and the reader
is referred to the IGSwebsite (International GNSS Service (IGS)) [46].

More recent is RINEX version 3, as shown in Figure F.2. Where RINEX version 2 is limited
to the measurements of GPS and Glonass, version 3 supports all GNSSes, including Galileo
and BeiDou. The first letter of the satellite IDs in the blue box refers to the constellation, with
‘G’ for GPS, ‘R’ for Glonass (Russian), ‘E’ for Galileo (Europe) and ‘C’ for BeiDou (China).

The example in Figure F.2 contains GPS measurements on L1 (1575.42 MHz) and L2
(1227.60 MHz), respectively referred to as ‘C1’ and ‘C2’. For Galileo, there are measurements
on E1 (1575.42 MHz) and E5b (1207.14 MHz), referred to as ‘C1’ and ‘C7’.

RINEX version 4.00 was released in December 2021. The new version primarily implied a
major revision of the navigation message files to accomodate new navmessages from all the
GNSS constellations and system data messages.

Finally we note that an important field in the header of the file is the antenna height
(‘ANTENNA: DELTA H/E/N’). According to conventions, this must be the vertical height from
the marker (or object of interest) to the antenna reference point (ARP), typically the bottom
of the antenna housing (center of the bottomplane). In the example of Figure F.1 it reads
1.5336 m (DELTA H). The DELTA E and N (East and North) are generally zero (the antenna is
centered exactly above the marker).

https://www.igs.org/wg/rinex/#documents-formats
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In this appendix we deal with electromagnetic signals, though many of the phenomena are
similar for acoustic signals, and we consider what happens to these signals on the way from
transmitter to receiver. As shown in Figure G.1 there is a propagation medium in between the
transmitter and receiver, e.g. air in the Earth’s atmosphere.

In this appendix we first consider signal propagation at a global level, and we describe
how signal power gets spread as the signal moves away from the transmitter, even when an
electromagnetic signal travels through vacuum (a lossless, homogeneous medium), and next,
we consider, more on a local scale, propagation effects when the medium is not homogeneous,
and at the interface between two media.

Vector quantities are explicitly denoted in bold in this appendix, hence the electric field
vector is 𝐄, and the magnetic field vector 𝐇.

G.1. Signal spreading
For signal propagation at a global level, one might imagine a point source, that radiates a
(perfectly) spherically symmetric electromagnetic field, see Figure G.2. A fictitious antenna
which radiates uniformly in all directions is called an isotropic antenna. Strictly, this can not be
accomplished in practice, see Section 21.3. The isotropic antenna is nevertheless commonly
used as a reference.

An electromagnetic field can be used to transfer energy. Energy becomes available, or
is dissipated, with the combustion of petrol fuel and with the passage of an electric current
through a resistance. Operation of a measurement system is based on the transfer of elec
tromagnetic energy from transmitter to receiver. As an electromagnetic wave propagates

Figure G.1: A signal leaves transmitter Tx, propagates through a medium, and arrives at receiver Rx.

395



396 G. Signal propagation [*]

Figure G.2: An isotropic point source antenna, which radiates a perfectly spherical electromagnetic field.

through space, energy is transferred. The Poynting vector, see [128], is defined as

𝐒 = 𝐄 × 𝐇 [VA
m2 =

W
m2 ] (G.1)

where 𝐄 is the electric field vector [V/m] and 𝐇 the magnetic field vector [A/m]; it results
as the outer, or crossproduct of 𝐄 and 𝐇. The Poynting vector is interpreted as giving the
direction, and quantifying the rate of energy transfer per unit area (expressed in Watt per
squared meter), which is a power density (formally, it is the directional energy flux density).
It is a vector quantity, in general depending on position and time, hence 𝐒(𝐱, 𝑡).

Power is energy per unit time. Energy is expressed in Joule [J], and power consequently
in Joule/second, which is Watt [W] (=[Nm/s]).

A pointsource antenna allows for a simple analysis of the spreading of the power. The
power per unit area decreases as 1/𝑟2 as the field propagates radially outward, with distance
𝑟, away from the source as shown in Figure G.2. The total power transmitted by the antenna
is 𝑃𝑡 [W] (typically timeaveraged). The area of a sphere with radius 𝑟 in the threedimensional
space equals 4𝜋𝑟2 [m2]. The sphere is centered at the source, and the power density at a
distance 𝑟 from the source is consequently

𝑆𝑟 =
𝑃𝑡

(4𝜋𝑟2) [ W
m2 ] (G.2)

The transmitted signal power is distributed over the full surface (skin) of the sphere. The
decrease in power density with increasing distance to the transmitting antenna is commonly
referred to as free space loss, although strictly it is not a loss, but just a spreading of the
power. It is not a loss of energy; in a strict sense, loss only occurs when a medium really
takes away part of the signal energy (e.g. due to interaction with particles in the medium 
for instance by absorption).

G.1.1. Link budget
Analysing the link budget yields an answer to the question — given the amount of signal power
made available at the source by the transmitter — how much signal power eventually arrives
at the target (the receiver). The free space loss typically forms a big part of the link budget,
but there is also the antenna gain, both for transmitter and receiver.

The amplification of a transmitted signal is referred to as gain. The gain 𝐺, in terms of
power, is the ratio of the received signal power and the transmitted signal power:

𝑃Rx
𝑃Tx

= 𝐺
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Figure G.3: The power transmitted by an isotropic antenna is represented by the sphere in blue. The radiation
pattern of the actual antenna under consideration is shown in red; the direction with maximum signal power
density is indicated by 𝑆𝑀; in that direction the antenna gain equals 𝐺𝐴𝑇 =

𝑆𝑀
𝑆𝑖
.

or

𝑃Rx = 𝑃Tx 𝐺

which demonstrates explicitly that the gain is a factor; the transmitted signal power is mul
tiplied by the gain 𝐺 to arrive at the received signal power. When the transmitted signal
gets attenuated, e.g. due to the ‘gain’ of a cable, the received signal power is less than the
transmitted signal power, and 𝐺 < 1. Typically the gain of freespace propagation is (much)
smaller than one (𝐺FS ≪ 1), due to spreading of the signal in space.

The gain is decomposed into several contributing factors — in this appendix the transmitter
antenna gain, the ‘gain’ due to signal spreading, and the gain of the receiver antenna.

An antenna converts an electric signal into an electromagnetic wave; it is the interface
between the wired and wireless transmission. From a mathematical point of view, an isotropic
antenna is the most simple antenna. An isotropic antenna is a hypothetical antenna which
radiates signal power uniformly in all directions (in three dimensions), cf. Figure G.2. The
gain of an isotropic antenna is 𝐺 = 1. With isotropic antennas, we have 𝐺AT = 𝐺AR = 1 (for
transmit and receiver antenna respectively).

In practice, an antenna will concentrate (focus) the transmitted power in certain directions;
the antenna gain is elevation and azimuth dependent. Typically the gain of the transmitter
antenna is larger than one 𝐺AT > 1, when the receiver is located within the beam of the
transmitter antenna (and vice versa), cf. Figure G.3. The gain actually expresses how well
the antenna can concentrate (focus) the power in a specific direction. The Effective Isotropic
Radiated Power (EIRP) is defined as

𝑃EIRP = 𝑃Tx𝐺AT

The receiver — located in the transmitter antenna beam — may believe that the transmitter is
transmitting isotropically (in all directions), and then the total radiated power would be 𝑃EIRP.
The transmitter is providing power 𝑃Tx, but to the receiver it looks like an isotropic antenna
providing power 𝑃EIRP.

Given the power density, the power intercepted by the receiving antenna depends on the
(effective) area of the antenna 𝐴𝑒. The effective area is generally not the actual (physical)
area, but rather a modeling parameter of the antenna. The total received power 𝑃Rx simply
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equals the product of the power density at the receiver and the effective area of the receiving
antenna

𝑃Rx =
𝑃Tx𝐺AT
4𝜋𝑟2 𝐴𝑒

The gain 𝐺A and the effective area 𝐴𝑒 of an antenna are related ([129]) by

𝐺A =
4𝜋
𝜆2 𝐴𝑒

with 𝜆 the wavelength of the signal (related to the frequency 𝑓 through the speed of light 𝑐,
by 𝜆 = 𝑐/𝑓). Applying this to the receiving antenna, the total link budget equation becomes

𝑃Rx = 𝑃Tx𝐺AT⏝⎵⏟⎵⏝
𝑃EIRP

( 𝜆
4𝜋𝑟)

2

⏝⎵⏟⎵⏝
𝐺FS

𝐺AR

For an isotropic antenna (𝐺 = 1), the effective area equals 𝐴𝑒 =
𝜆2
4𝜋 . There exists a

rich variety of different antennas, think of dipole antennas, horn and parabola antennas —
discussing their specifics is beyond the scope of this book. In its most simple form, the above
link budget consists of two isotropic antennas (𝐺AT = 𝐺AR = 1) and we just have the freespace
gain 𝐺FS.

Note that further details can be added in to the above link budget, such as some loss due
to the atmosphere (in a satellite – Earth link), and socalled linelosses, which are losses due
to feedcables, connecting the transmitter and receiver with their respective antennas.

G.1.2. Example: radar equation
In radar remote sensing the transmitter and receiver are colocated and share the same an
tenna. The transmitter sends a radio pulse, and listens for, and times the reflection from some
topography on the Earth’s surface Consequently, the signal has travelled distance 𝑑 twice, it
is a twoway range. The link budget for this twoway ranging is set up in two parts: the
signal is originally transmitted by the transmitter and captured by the object on the ground
(area), and consequently ‘retransmitted’ (reflected) back to the transmitter. The Radar Cross
Section (RCS) is a measure of the electric/reflective area; it may, or may not correspond with
the actual physical area of the object. The RCS is denoted by 𝜎𝑡 and expressed in [m2]. The
RCS is sometimes decomposed into 𝜎𝑡 = 𝜎𝑜𝐴, where 𝐴 is the area intercepting the transmit
ted signal (in [m2]), and 𝜎𝑜 presents the fraction of power which is reflected, and which is a
dimensionless quantity, similar to the antenna gain.

The total power (in W) ‘transmitted’ by the reflecting object is obtained similarly as before,
but instead of multiplication by the effective area 𝐴𝑒, we multiply by the Radar Cross Section,
and equals

𝑃reflect =
𝑃Tx𝐺AT
4𝜋𝑑2 𝜎𝑡

The radar transceiver is located in the beam of the retransmission, and considers the reflecting
object to transmit isotropically with 𝑃reflect. To conclude we have to apply again the spreading
loss along the path from reflecting object back to transmitter, and the effective area of the
receiving antenna.

𝑃Rx =
𝑃Tx𝐺AT
4𝜋𝑑2 𝜎𝑡

1
4𝜋𝑑2

𝐺AR𝜆2
4𝜋 = 𝑃Tx𝐺2A𝜎𝑡𝜆2

(4𝜋)3𝑑4
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As the transmitter and receiver antenna are identical, we have 𝐺AT = 𝐺AR = 𝐺A. The distance
𝑑 between transceiver and reflecting object appears in the link budget with power 4. In one
way ranging this would be only a power of 2.

G.1.3. Noise, and SignaltoNoise ratio
The presence of noise may obscure proper reception and processing of the desired signal.
Noise signals may originate from (processes in) the measurement equipment itself (circuitry
and transmission lines) or be picked up by the receiving antenna, next to the desired signal.
Noise around in the atmosphere can come from outer space (galactic, cosmic noise), be caused
by physical processes in atmosphere and Earth, or by human activities.

The receiver shall gather sufficient (desired) signal power to properly function. The Signal
toNoise Ratio (SNR) is a key parameter to successful operation of a communication or mea
surement system. This ratio compares the power of the desired electromagnetic signal 𝑃𝑠,
with the power of (always present) electromagnetic background noise 𝑃𝑛, simply as

𝑃𝑠
𝑃𝑛
.

In an attempt to bridge large powerlevel differences, it is common in electrical engineering
and communications technology to employ the following logarithm of the ratio

SNR = 10 10 log(𝑃𝑠𝑃𝑛
) [dB] (G.3)

that has been assigned to the ‘unit’ decibel, denoted by dB. The above ratio is a general relative
measure of power, but in practice commonly used to compare signal power with noise power.
When 𝑃𝑠 = 𝑃𝑛, the SNR is zero. When the desired signal is 100 times more powerful than the
noise, the SignaltoNoise Ratio equals 20 dB. When the signal is 100 times less powerful than
the noise, the SNR is 20 dB.

One decibel is one tenth of one bel, named in honour of Alexander Graham Bell, but the
bel is seldom used without the deciprefix.

When the power of a signal is compared to a standard power level of for instance 1 Watt
(= 𝑃𝑛), the SNR is said to have unit decibelWatt [dBW], or with 10−3 Watt, unit decibel
milliwatt [dBm].

G.2. Propagation effects
The Maxwell equations govern the behaviour of an electromagnetic field. Solutions to these
equations give the electric and magnetic field strengths as functions of time and position,
and consequently can describe the propagation of electromagnetic waves through space. For
a introduction to these equations, see e.g. [128], as this textbook offers an introduction to
the theoretical concepts of electromagnetic waves, and contains the basic material on time
varying wavefields and their applications in electrical engineering, communication and remote
sensing.

According to the Maxwell equations, spatial variations of the electric and magnetic field
components are related to temporal variations of the magnetic and electric field components
respectively. The variations of the electromagnetic field can be perceived as an electromag
netic wave propagating through space as time passes by. The topic of particular interest is,
once the wave has been excited by an electromagnetic source, to study and describe the wave
propagation, based on the Maxwell equations for electromagnetic fields.

A basic wave type is the plane wave. The electric and magnetic fields are perpendicular
to each other, and to the direction of propagation, see Figure G.4. The electric and magnetic
field vectors 𝐄 and 𝐇, and the propagation direction form a right handed triad, and have been
chosen to lie along respectively the third (𝑧), first (𝑥) and second (𝑦) axis.
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Figure G.4: The relation between the electric 𝐄 and magnetic 𝐇 field vector and the propagation direction of a
plane wave. The Poynting vector lies along the propagation direction, 𝐒 = 𝐄×𝐇, and power transfer, by this plane
wave, takes place in the propagation direction.

In practice a plane wave does not exist, as it can not be excited by any finitesized antenna.
It may serve however, as a useful approximation for wave propagation, for instance at larger
distances from the source, studying local and regional effects. The reader is referred to the
textbook [128] for an indepth treatment.

The plane wave exists in homogeneous medium, implying that the propagation medium
parameters are constants, and our discussion will be restricted to this type of medium for
the moment. The study of electromagnetic waves is, as done here as well, often restricted
to steady state analysis, in which the electromagnetic field quantities are taken to depend
sinusoidally on time (a sinusoidal wave is called a harmonic wave). In addition to the above
restrictions, only lossless media are considered here (in some cases the Earth’s atmosphere
may be approximated as a lossless medium), and vacuum is an example of lossless medium.

The electric field vector, as shown in Figure G.4, is given by

𝐄(𝐱, 𝑡) = (
0
0

𝐸𝑜 cos(𝜔𝑡 − 𝑘𝑦)
)

where the wave propagation takes place in vacuum, which is a lossless medium. In the above
equations 𝑘 is the socalled wave number, and in vacuum defined as 𝑘 = 𝜔

𝑐 or 𝑘 =
2𝜋
𝜆 in

radians per meter (it is the number of cycles in a distance of 2𝜋 m). The magnetic field vector
reads

𝐇(𝐱, 𝑡) = (
𝐻𝑜 cos(𝜔𝑡 − 𝑘𝑦)

0
0

)

The propagation ‘velocity’ 𝑣 of a wave in this type of medium correspondingly becomes
𝑣2 = 1

𝜀𝜇 . Relating this ‘velocity’ to the propagation speed in vacuum 𝑐

𝑛 = 𝑐
𝑣 =

√𝜀𝜇
√𝜀𝑜𝜇𝑜

= √𝜀𝑟𝜇𝑟 (G.4)

yields the (realvalued) index of refraction 𝑛. The refractive index is usually larger than one,
and the propagation speed in most media is less than the speed of light in vacuum, 𝑣 < 𝑐,
causing a delay in the signal travel time.



G.2. Propagation effects 401

Figure G.5: Uniform twodimensional plane wave, at left in lossless medium, at right in lossy medium. The wave,
shown in the threedimensional space at a particular epoch in time, propagates along the 𝑦axis to the right.

In the above equations is 𝜀𝑜 the electric permittivity in vacuum in farad per meter [F/m],
and 𝜇𝑜 the magnetic permeability in vacuum in henry per meter [H/m]. This last quantity
is fixed by the SI International System of Units to 𝜇𝑜 = 4𝜋.10−7 H/m. The speed of light
in vacuum is 𝑐 = 299792458 m/s and by the relation 𝑐2 = 1

𝜀𝑜𝜇𝑜
, the permittivity in vacuum

follows as 𝜀𝑜 ≈ 8.85 ⋅ 10−12 F/m. The nullindex refers to vacuum. The permittivity and
permeability of a medium are related to those of vacuum

𝜀𝑟 =
𝜀
𝜀𝑜
and 𝜇𝑟 =

𝜇
𝜇𝑜

these are the relative permittivity and relative permeability. Both are dimensionless quantities.

G.2.1. Example: two dimensional wave
In this section the two dimensional electromagnetic wave is introduced, merely by means of a
few graphical examples. The electromagnetic field vectors 𝐄 and 𝐇 do depend on two spatial
coordinates, on 𝑥 and 𝑦, but still not on 𝑧.

Figure G.5 presents two examples of the uniform plane wave: the planes of equal phase
and those of equal amplitude are parallel. The graph at left shows the plane wave in lossless
medium, whereas the graph at right pertains to lossy medium, in which the wave gets ‘damped’
as it propagates (the wave gets attenuated, by absorption). In the following we focus on
lossless media.

The wave at left is strictly periodic in space, with period 𝜆, the wavelength. A unit amplitude
was taken (initially). Note that the example is actually still a one dimensional wave as the 𝑥
coordinate is still not involved in the field vectors, 𝐄 is along the 𝑧axis, and 𝐇 along the
𝑥axis.

When the wave hits an object or medium which it can not penetrate, the wave gets re
flected. The angle of incidence Θ𝑖 then equals the angle of reflection Θ𝑟, cf. Figure G.6 at left;
the arrowed lines represent the propagation directions.

When a wave is incident upon the plane boundary between two different media, the wave is
partly reflected and partly transmitted through. Figure G.7 shows, beside the incident wave,
only the transmitted wave. The reflected wave will interfere with the incident one. If the
incident wave is plane and uniform, the reflected and transmitted ones are as well, in lossless
media. For the reflected wave holds again Θ𝑖 = Θ𝑟, Snell’s law of reflection, see Figure G.6 at
right. The transmission angle Θ𝑡 follows from Snell’s law of refraction

𝑛1 sinΘ𝑖 = 𝑛2 sinΘ𝑡 (G.5)

where 𝑛1 and 𝑛2 are the indices of refraction for medium 1 and 2 respectively, functions of 𝜀
and 𝜇 of the two media. Both laws are known from geometric optics.
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Figure G.6: At left, reflection: for a uniform plane wave the angle of incidence Θ𝑖 equals the angle of reflection
Θ𝑟, both measured with respect to the normal on the reflecting plane surface. At right, the angle of transmission
Θ𝑡 is according to Snell’s law of refraction; the transmitted wave is travelling at a different speed in medium 2,
than in medium 1 (in this example slower; 𝑛2 > 𝑛1), and in a different direction  the wave propagation direction
gets bended.

Figure G.7: Transmission of a uniform twodimensional plane wave. The (incident) wave propagates in the 𝑥
𝑦plane, to the front at an angle of 10∘ with the (positive) 𝑦axis. The transmission is slightly refracted to 20∘
(𝑛1 > 𝑛2).

G.2.2. Electromagnetic rays
So far we dealt with plane electromagnetic waves, which can exist in homogeneous media.
In general, electromagnetic waves are however not plane, for instance when they propagate
through an inhomogeneous medium. The propagation of an electromagnetic field through a
weakly inhomogeneous medium is described in terms of rays. The theory of geometric, or ray
optics can be derived from the Maxwell equations as an asymptotic solution in the limit as the
frequency approaches infinity. Geometric optics is generally a valid and useful approximation
when the medium parameters change very little over a distance that is large compared with
the wavelength.

The electromagnetic ray is introduced, as an approximate solution to the Maxwell equations
in inhomogeneous medium. The wavefront is formed by all points or locations in space where
the electromagnetic wave, transmitted by the source, has just arrived, see also Figure G.8.

The positions traced by a particular ‘point’ or spot on the wavefront, during the propaga

Figure G.8: Electromagnetic wavefront at times 𝑡1, 𝑡2 and 𝑡3. The curve connecting corresponding points on the
fronts represents a ray trajectory.
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Figure G.9: Refractive index 𝑛 as function of height 𝑧 [km], at left, and resulting ray trajectory in horizontally
layered medium (e.g. crosssection of the Earth’s atmosphere, with the Earth’s surface shown by the double line
at bottom), at right. The effect has been largely exagerated for illustrative purpose.

tion of the wave through space, form a ray trajectory, see Figure G.8. Wavefronts and ray
trajectories are generally curved in inhomogeneous media. For general uniform electromag
netic rays, they (fronts and rays) are — as long as the medium is isotropic — perpendicular
to each other. The tangent to a ray trajectory coincides in each point with the direction of
wave propagation. The key parameter for propagation can then be shown to be the index of
refraction 𝑛:

𝑛 = 𝑐√𝜀𝜇 (G.6)

that relates the propagation speed 𝑣 in the medium to the one in vacuum 𝑐, 𝑛 = 𝑐
𝑣 , as for the

plane wave before. In vacuum the index of refraction equals 𝑛 = 1.
At this point wave propagation has become very similar to the propagation of rays in

geometrical optics. The trajectory of a uniform electromagnetic ray can be described by second
order differential equations in the coordinates 𝑥, 𝑦, 𝑧, in which only the index of refraction 𝑛
is involved. Once initial position and direction have been specified, the ray trajectory can be
determined, for instance numerically, which is referred to as ray tracing. Finally we give an
example for the trajectory in a horizontally layered medium.

In a horizontally layered medium, the refractive index varies only (but continuously) in the
vertical direction, in this case the 𝑧coordinate: 𝑛 = 𝑛(𝑧), not necessarily being a monotonic
in or decreasing function.

With Θ the angle between the vertical axis (z) and the propagation direction, Snell’s law for
horizontally layered medium states that 𝑛(𝑧) sinΘ is constant along the ray trajectory, hence

𝑛(𝑧1) sinΘ1 = 𝑛(𝑧2) sinΘ2 (G.7)

Figure G.9 shows an example of a ray trajectory in a horizontally layered medium. The
graph at left gives the refractive index as function of height 𝑧. It increases monotonically
with decreasing height, as is common when an electromagnetic wave approaches the Earth’s
surface from space. The amount of increase and the eventual value at the Earth’s surface
have however been largely exagerated in this example, for illustrative purpose.

Propagation through a horizontally layered medium can apply to electromagnetic waves
traveling through a local part of the Earth’s atmosphere, that is, over a relatively small distance
so that the curvature of Earth (and its atmosphere) can be neglected.

The signal path gets more and more bended (refracted), all the time, as shown in Figure G.6
at right, towards the Earth’s surface, as the refractive index keeps on increasing. And the signal
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Figure G.10: Diffuse reflection. The surface is not a ‘perfect’ mirror, and the electromagnetic wave is reflected in
multiple directions. Diffuse reflection occurs when the surface irregularities are comparable to, and larger than the
wavelength. For specular reflection, surface imperfections/irregularities have to be smaller than the wavelength.

gets delayed, as the refractive index is larger than one (and keeps on increasing), and hence,
the propagation speed gets smaller and smaller, than the speed of light in vacuum.

Not just any electromagnetic wave will pass through the Earth’s atmosphere; visible light
and microwaves will pass, as well as certain bands in the infraredpart of the spectrum.

In the lower part of the Earth’s atmosphere (generally the lower 10 km of the atmosphere),
the socalled troposphere, the refractive index 𝑛 practically depends on the temperature, the
atmospheric pressure, and the amount of water vapour (humidity). This holds for the radio
spectrum, frequencies below 20 GHz; the troposphere is nondispersive at these frequencies,
that is, the refractive index is the same for all frequencies. For signals in the visible and near
visible part of the spectrum (see also Appendix A.1), the refractive index does depend also on
the frequency.

At frequencies exceeding a few GHz, up to the visible and nearvisible spectrum, rain
(percipitation), clouds and fog may cause significant absorption and scattering of radio waves.
Visible and nearvisible signals for sure do not allow all weather operations.

Finally we note that in this section, we briefly reviewed the subject of propagation of
electromagnetic waves, and we covered, next to attenuation and refraction, also reflection,
thereby assuming a perfect, flat boundary between the two media, resulting in a socalled
specular reflection (as in Figure G.6). In practice the boundary surface may not be perfectly
flat and smooth, and cause actually reflection of the wave into multiple directions, as illustrated
in Figure G.10. This is an example of diffuse reflection, also refered to as scattering.

G.3. Acoustic waves
In acoustics, energy is transferred through a medium, by means of a vibrational wave. For
instance, molecules in a fluid are displaced from their normal configuration, and this dis
placement (for instance compression) causes an internal elastic restoring force. As a sound
wave travels through a medium, the particles of the medium vibrate and produce density and
pressure changes along the path of motion of the wave. These compressions and dilations
propagate from transmitter to receiver, as a longitudinal wave.

There are various types of transducers which convert electric energy into sound pressure,
or vice versa, for instance by means of the piezoelectric effect. An electric potential difference
may arise between the different sides of a certain crystal when undergoing mechnical strain,
and vice versa. In hydrography, the transmitter is typically referred to as the source or the
projector, and a hydrophone is the receiving unit.

G.3.1. Acoustic wave propagation
The propagation speed 𝑣 of acoustic waves in a medium is given by

𝑣 = √𝐸𝜌
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where 𝐸 is the elasticity modulus (also known as bulk modulus), the relative variation of
volume due to pressure in [Pa], which is [kg/ms2], and 𝜌 the density in [kg/m3], both are
properties of the medium. For water the elasticity modulus is 𝐸 ≈ 2.2 ⋅109 Pa, and the density
is 𝜌 ≈ 1.0 ⋅ 103 kg/m3, and this yields 𝑣 ≈ 1.5 ⋅ 103 m/s. In practice the speed of sound in
(sea)water depends on temperature, pressure, and salinity.

The pressure obviously depends on the water depth. With an atmospheric pressure of
101325 Pa (1013.25 mbar) at the surface, the pressure increases roughly by the same amount
every 10 m of depth, due to the density of water of about 𝜌 ≈ 1.0⋅103 kg/m3. The temperature
may range from up to 20∘  30∘ in the top layer, to close to zero at large depths. The salinity is
roughly at the 0.35‰level (per mille). As a result the speed of sound may vary, as a function
of depth, by several percents, and range from about 1475 m/s to 1520 m/s. Of course, local
variations in pressure, temperature and salinity translate in variations of the speed of sound.

Similar to the Poynting vector (G.1) with electromagnetic waves, the rate of energy transfer
(or flow) per unit area is defined for sound waves as well, and referred to as intensity 𝐼. It is a
function of the amplitude of the pressure changes, (ambient) density, and sound propagation
speed. The unit of intensity 𝐼 is [W/m2].

Most of the concepts covered in this appendix on electromagnetic waves apply to acoustic
waves as well, like the SignaltoNoise ratio and propagation effects such as attenuation,
reflection and refraction.

When going from one medium to another, an acoustic wave may propagate (penetrate)
and/or get reflected. The acoustic impedance determines this behaviour. The larger the
difference in impedance between the two media, the larger the amount of wave energy that is
reflected back. The acoustic impedance is a measure of opposition that a system or medium
presents to the acoustic flow resulting of an acoustic pressure being applied to the system
or medium. For example, upon an air  brick wall interface, the wall has a (much) higher
impedance than air, and most of the sound is reflected back.





H
Quantity, dimension, unit

The measurement of any quantity involves comparison with some (precisely) defined unit
value of the quantity. The statement that a certain distance is 25 meters, means that it is 25
times the length of the unit meter. A quantity shall be used (defined), with appropriate unit,
that provides a reproducible standard.

quantity dimension unit

distance length meter [m]
time duration time second [s]
mass mass kilogram [kg]

Table H.1: Three fundamental quantities with the symbol for the unit indicated between square brackets.

As listed in Table H.1, the three fundamental quantities are distance, time duration and
mass. The units are given in the Système Internationale (SI), the International System of
Units, see e.g. [52]. This system was first established in 1889 by the Bureau International
des Poids et Mesures (BIPM) [130]. The official definitions read:

• the meter is the length of the path travelled by light in vacuum during a time interval of
1/299792458 of a second

• the second is the duration of 9192631770 periods of radiation corresponding to the
transition between the two hyperfine levels of the ground state of the cesium133 atom

• the kilogram is the unit of mass; it is equal to the mass of the international prototype of
the kilogram

The meter, in its above definition, is linked to the second, via the speed of light in vacuum 𝑐,
which equals 299792458 m/s. The speed of light in vacuum is a physical constant, and its
determination remains a permanent challenge to physicists; the uncertainty at present is at
the 1 m/s level. Originally the meter was established by the end of the 18th century in France;
it was thought to be one tenmillionth part of the meridional quadrant of the Earth (a meridian
passing through both poles).

The angle does not appear as a quantity in Table H.1. A supplementary unit (actually
the quantity is dimension and unitless) is the radian [rad] for plane angles. A full circle
corresponds to 2𝜋 rad. Other units for angles are grades or gradians (also known as gon), a

407
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designation symbol power

Exa E 1018
Peta P 1015
Tera T 1012
Giga G 109
Mega M 106
kilo k 103
milli m 10−3
micro 𝜇 10−6
nano n 10−9
pico p 10−12
femto n 10−15
atto a 10−18

Table H.2: Most common powers of ten and their designation, also known as SIprefixes.

circle is 400 grad (the centesimal system), and degrees, a circle is 360 deg, or 360∘, 1 minute
of arc is 1/60 of a degree, and 1 second of arc is 1/60 of a minute or 1/3600 of a degree,
the sexagesimal system, a numeral system with sixty as its base. As an example 52∘03′44″
means 52 ⋅ 602 + 3 ⋅ 601 + 44 ⋅ 600 seconds of arc.

To handle a wide range of magnitudes, standard prefixes are available for the above units
according to the decimal system (as for instance ‘kilo’ and ‘milli’ for meter), see Table H.2.
‘ppm’ stands for parts per million and implies a 10−6 effect, and ‘ppb’ stands for parts per
billion, a 10−9 effect.

Mass is an intrinsic property of an object that measures its resistance to acceleration,
i.e. it is a measure of the object’s inertia. Force is a derived quantity. It has dimension ‘mass
multiplied by length divided by timesquared’; the unit is Newton [N] which equals [kg m/s2].



I
Publieke Dienstverlening Op de

Kaart (PDOK)

PDOK, a collection of public map services, enables users to access digital geographical data
for the Netherlands using Open Source Geospatial (OSG) compliant web services. Over 200
datasets and over 500 view and download services (aimed at digital mapping) are available to
the general public, private companies, organisations and the public sector. The use of PDOK
is for free. For details and the website, see [59].

I.1. Introduction
PDOK unlocks digital geospatial data from the Dutch government. This unlocking is done
through a central facility: PDOK, [59]. The data are available first of all through a viewer
(PDOK Viewer) in your webbrowser in order to get familiar with the available data — to say
browse through the available data, and secondly, as a web service or as a downloadable file
(then you use your GISsoftware, for instance QGIS [5], to analyze and visualize the data).
In the sequel we discuss the web service in more detail.

In PDOK you can also find: ‘Basisregistratie Topografie Achtergrondkaarten (BRTA)’, as
discussed in Section 38.1. You can use this map for your own website or publication with the
advantage that it is free of charge, and free of advertisements. In this book we frequently
use maps and data from PDOK, and refer to the website as a single point of entry, though
indicating each time the keyword of the dataset or map.

Where necessary, PDOK ensures that the services and files comply with the INSPIRE direc
tive on improving the exchange of spatial data in Europe1. PDOK also manages the Nationaal
Georegister (NGR). This online catalogue contains a lot of links to Dutch spatial datasets in
cluding a lot of web services from different providers.

Almost all PDOK files and data services are available under an ‘open’ license. This means
that everyone is free to use the data in accordance to a Fair Use Policy. PDOK offers an
overview of all freely available services and datasets. In some cases the access policy of the
holders of the data source determines that the data are not accessible to everyone.

The available map information is easy to reuse in your own applications. The use of the
web service is done by copying and pasting a URL from the overview, or from the Nationaal
Georegister (NGR). If your software supports open standards that apply to PDOK, then the

1INSPIRE, which stands for Infrastructure for Spatial Information in Europe, is a directive, since 2007, leading to
standardization of describing and sharing environmental spatial data. INSPIRE defines common standards for 34
spatial data themes (such as transport, energy, population and natural risk) [131].
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abbreviation description type

WMS Web Map Service raster data (images)
WMTS Web Map Tile Service raster data(images)
WFS Web Feature Service vector data (lines, points, etc.)
WCS Web Coverage Service coverage

Table I.1: Open Geospatial Consortium (OGC) web service protocols.

requested map layer is shown. For example, to get a background map into your GIS applica
tion, you should link the URL from the overview into your GIS application. In QGIS [5] this is
done by opening a WMTS layer (raster) using this URL. In QGIS there is also a plugin that can
do this for you: the PDOK plugin. You can install this plugin though the plugin menu in QGIS.

I.2. Protocols
The use of the PDOK data web services [59] requires certain knowledge of geotools and the
various protocols used by PDOK and GIS applications, see Table I.1. The Open Geospatial
Consortium (OGC) standards are used by PDOK to the maximum extent possible. The stan
dard being used is shown in the PDOK overview. Sometimes the same product is available
in multiple standards and you need to understand what each standard can offer and more
importantly what not.

A Web Map Service (WMS) or Web Map Tile Service (WMTS) server acts upon requests by
the client (e.g. you, using QGIS) for a raster map with a given extent, set of layers, symboliza
tion style, and transparency. The WMS server then consults its local data sources, (if needed)
rasterizes the map, and sends it back to the client in a raster format. For QGIS, this format
would typically be JPEG or PNG. WMTS is used for distributing tile sets of geospatial data.
The dataset is geographically cut into small parts, to enable manageable operation. This is a
faster and more efficient way of distributing data than WMS, because with WMTS, the tile sets
are pregenerated (and stored at the server), and the client only requests the transmission
of the tiles, not their production. A WMS request typically involves both the generation and
transmission of the data. In order to display the data at a variety of scales close to what the
user might want, the WMTS tile sets are produced at several different scale levels and are
made available for the GIS client to request them. Only the resulting ‘’image’ is sent to the
user — the original data remain at the PDOKserver. Also Google Maps and Google Earth work
this way, see Appendix K.

PDOK adopts WMTS tiling services (and not the WMS protocol) for popular data sets be
cause the tiling services are more efficient than the WMS protocol. With WMS, the map is
recreated every time and this is a heavy burden on the PDOK servers. With tiling services
images are prestored and these images are ready for loading from the cache at all times.

It is important to understand that WMS/WMTSserves images (PNG/JPEG) that are ren
dered by the WMS/WMTS server. Therefore, you, as a user, cannot change style information.
You basically get the image asis. QGIS is able to display a legend graphic in the table of con
tents’ layer list and in the map composer only if the WMS/WMTSserver has GetLegendGraphic
capability, and the layer has the getCapabilityurl specified.

In case you want to apply your own styling, you should use WFS or WCS protocols instead
(if available).

A Web Coverage Service (WCS) provides access to raster data in forms that are useful
for clientside rendering, as input into scientific models, and for other clients. WCS allows
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clients to choose portions of a server’s information holdings based on spatial constraints and
other query criteria. QGIS has a native WCS provider which handles all network requests and
uses all standard QGIS network settings. It is also possible to select cache mode (‘always
cache’, ‘prefer cache’, ‘prefer network’, ‘always network’), and the QGIS provider also supports
selection of time position if a temporal domain is offered by the server.

AWeb Feature Service (WFS) in QGIS behaves pretty much like any other vector layer. You
can identify and select features, and view the attribute table. In general, adding a WFS layer
is very similar to the procedure used with WMS. Though with WFS you can still customize, in
your GIS software, the visualization to your own needs and wishes — there is no precreated
‘image’. Practically spoken, with a Web Feature Service (WFS), the server primarily acts like a
geographical database.





J
OpenStreetMap (OSM)

OpenStreetMap is a free, editable, opensource map of the world. From the website [51]:
‘OpenStreetMap is built by a community of mappers that contribute and maintain data about
roads, trails, cafés, railway stations, and much more, all over the world’. OpenStreetMap
(OSM) is a collaborative project (collaborative mapping). Rather than the map itself, the data
generated by the project are considered its primary output.

Figure J.1: Sample map of the Delft area from OpenStreetMap [51]. ©OpenStreetMap contributors, data available
under the Open Data Commons Open Database License (ODbL).

The keyassets of OpenStreetMap are, quoted from [51]:

• OpenStreetMap emphasizes local knowledge; contributors use aerial imagery, GPS de
vices, and lowtech field maps to verify that OSM is accurate and up to date

• OpenStreetMap’s community is diverse, passionate, and growing every day; the contrib
utors include enthusiast mappers, GIS professionals, engineers running the OSM servers,
humanitarians mapping disasteraffected areas, and many more

• OpenStreetMap is open data: you are free to use it for any purpose as long as you credit
OpenStreetMap and its contributors; if you alter or build upon the data in certain ways,
you may distribute the result only under the same license
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Google Earth

K.1. Introduction
Google Earth, [132], features an interactive 3D representation of the Earth, based, in the
first place on satellite imagery, covering the entire Earth, supplemented by aerial photography
and geographic information. In many cities Google Earth can show 3D building models with
photorealistic 3D imagery.

A threedimensional representation is, for much of the Earth, enabled by using radar and
optical remote sensing measurements, resulting in a Digital Elevation Model (DEM). At present,
Google Earth relies on radar measurements to the Earth’s surface, taken from two locations
(for instance two passes of the same spacevehicle or two antennae on the same space
vehicle), according to the principle of Interferometric Synthetic Aperture Radar (InSAR), see
Section 23.2. Google Earth allows a user to go below the surface of the ocean, and view,
similarly to land surface, also the seafloor.

Google uses a WGS84 datum as its reference system for Google Earth, and coordinates in
KML (see next section) are longitude, latitude and altitude. Longitude and latitude values are
in decimal degrees, and negative for West and South, respectively. The vertical component,
altitude, is expressed, in meters, with respect to the Earth Gravitional Model 1996 (EGM96),
which is a geopotential model of the Earth, see Section 32.4 and Chapter 33. When altitude
is omitted, then the default value of zero is substituted, or, the corresponding height of the
terrain is taken at that location (‘clamped to ground’). Instead of altitude, ellipsoidal height
may be included in KML.

For visualization, Google Earth uses a simple cylindrical mapprojection (web Mercator
projection), which means that meridians and parallels are straight lines and perpendicular
to each other, though differently from the Mercator mapprojection, both the meridians and
parallels are equidistant; both are discussed in Section 30.4.

Google Earth can run as an application on the user computer and as a Web Map Service
(WMS) client, see Appendix I.

In the domain of civil engineering, Google Earth is useful for visualization and presentation,
and to obtain a first impression of the landscape and the area of interest. It should be kept in
mind that, at present, the geographic information in Google Earth at best has a meteraccuracy,
and certainly not centimeteraccuracy required for building and infrastructureconstruction.

K.2. KML
A user may add, to Google Earth, his/her own data, using Keyhole Markup Language (KML).
KML, used by Earth browsers like Google Earth for the visualization of geographic information
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Figure K.1: Result of the simple example KMLfile in Google Earth [132], showing the TU Delft campus. Image
from Google Earth (imagery date 31/08/2019).

on Earth, is the equivalent of HyperText Markup Language (HTML) for web browsers. KML,
an eXtendable Markup Language (XML), was created by Keyhole, Inc., specifically for, at that
time, Keyhole EarthViewer. The company was acquired by Google in 2004, leading to Google
Earth. KML became an international standard of the Open Geospatial Consortium (OGC) in
2008.

KML specifies a set of features, like placemarks, images, polygons, 3D models and textual
descriptions, for display in an Earth browser. A very simple example of a KMLfile, producing
the yellow pushpin at the TU Delft campus, see Figure K.1, is shown below. The placemark
is at 52 degrees latitude North, cf. Figure 26.1.

<?xml version=”1.0” encoding=”UTF8”?>
<kml xmlns=”http://www.opengis.net/kml/2.2”>

<Placemark>
<name>Placemark at TU Delft</name>
<description>Clamped to ground</description>
<Point>

<coordinates>4.3734,52.000,0</coordinates>
</Point>

</Placemark>
</kml>

K.3. Google Earth Engine
Google Earth Engine is a cloud computing platform for processing primarily satellite imagery [133].
It provides, through a webinterface, access to a large database of satellite imagery (Landsat,
MODIS, and Sentinel, see Table 25.1), and the computational power needed to analyze those
images. Using repeated satellite imagery (timeseries of images), a user can analyze — using
readytouse functions and his/her own scripts — changes on the Earth’s surface, for instance

https://www.google.com/earth/
https://earthengine.google.com/
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Figure K.2: Screenshot of a land cover example in the SanFrancisco area, using Google Earth Engine (a demo
classification script is used). Map data ©2̇019 Google, [133].

urbanization and deforestation. An example of land cover classification in Google Earth Engine
is shown in Figure K.2.

K.4. Data storage and processing architecture
These days many new remote sensing satellite missions are being launched, think for instance
of the ESA Sentinel program. These missions deliver a huge amount of Earth observation data,
in the order of Petabytes of data. The use of these data, with many users simultaneously,
requires a different architecture for storage and processing.

Traditionally a user would download data from a server to his own computer system (client),
store it locally, and process and analyze the data with software installed and running on his
computer system.

Today, there is a trend, with the use of big (geo) data, to leave the data on the server,
which is possibly largely distributed, meaning to consist of an array of physical machines. The
user instead uploads to the server, instructions and operations, for instance in a Python script,
and has them run on the server, and eventually gets back his/her result, typically in the form
of an image or a map. This is the socalled virtual machine approach.

The architecture of Google Earth Engine (GEE) is more diffuse, in the sense that you
interact within the cloud, both for storage and computing [133]. The data are stored on a
network of computers, and the processing is carried out on a network of computers as well
(distributed storage, and distributed computing).

https://earthengine.google.com/
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